このアイテムのアクセス数: 113

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
peerj-cs-542.pdf2.32 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorPataky, Todd C.en
dc.contributor.authorYagi, Masahideen
dc.contributor.authorIchihashi, Noriakien
dc.contributor.authorCox, Philip G.en
dc.contributor.alternative八木, 優英ja
dc.contributor.alternative市橋, 則明ja
dc.date.accessioned2022-11-02T04:48:24Z-
dc.date.available2022-11-02T04:48:24Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/277002-
dc.description.abstractThis paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed framework consists of point set registration, point correspondence determination, and parametric full-shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically) calculated probability values. These probability values represent the likelihood that, in the absence of a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the observed one. This proposed framework nevertheless possesses a number of limitations, including sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis of 3D shapes is discussed.en
dc.language.isoeng-
dc.publisherPeerJen
dc.rights© 2021 Pataky et al.en
dc.rightsThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMorphologyen
dc.subjectMorphometricsen
dc.subject2D shape analysisen
dc.subjectStatistical analysisen
dc.subjectClassical hypothesis testingen
dc.subjectSpatial registrationen
dc.titleLandmark-free, parametric hypothesis tests regarding two-dimensional contour shapes using coherent point drift registration and statistical parametric mappingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePeerJ Computer Scienceen
dc.identifier.volume7-
dc.relation.doi10.7717/peerj-cs.542-
dc.textversionpublisher-
dc.identifier.artnume542-
dc.identifier.pmid34084938-
dcterms.accessRightsopen access-
datacite.awardNumber17H02151-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17H02151/-
dc.identifier.eissn2376-5992-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle座標系に基づくヒト運動解析の妥当性検討及び座標系フリー解析方法の確立ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons