このアイテムのアクセス数: 217
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2218-05.pdf | 16.96 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | GOODRICK, JOHN | en |
dc.date.accessioned | 2022-11-11T01:51:04Z | - |
dc.date.available | 2022-11-11T01:51:04Z | - |
dc.date.issued | 2022-05 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277116 | - |
dc.description.abstract | This article surveys some recent results on ordered abelian groups (possibly with additional definable structure) from the subclass of NIP theories which are dp-minimal. To put these results in context, the first part of the article reviews and compares various other generalizations of a-minimality (such as local a-minimality and a-stability) and their consequences. It is useful to make the further assumption that there is a cardinal bound on the number of convex subgroups definable in elementary extensions of the structure. Under this hypothesis, some classic theorems on o-minimal structures, such as the monotonicity theorem for unary definable functions, can be suitably generalized. | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject.ndc | 410 | - |
dc.title | DEFINABLE SETS IN DP-MINIMAL ORDERED ABELIAN GROUPS (Model theoretic aspects of the notion of independence and dimension) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2218 | - |
dc.identifier.spage | 40 | - |
dc.identifier.epage | 52 | - |
dc.textversion | publisher | - |
dc.sortkey | 05 | - |
dc.address | DEPARTMENT OF MATHEMATICS, UNIVERSIDAD DE LOS ANDES | en |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
出現コレクション: | 2218 モデル理論における独立概念と次元の研究 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。