このアイテムのアクセス数: 88

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12894-021-00848-x.pdf947.33 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFunada, Satoshien
dc.contributor.authorLuo, Yanen
dc.contributor.authorYoshioka, Takashien
dc.contributor.authorSetoh, Kazuyaen
dc.contributor.authorTabara, Yasuharuen
dc.contributor.authorNegoro, Hiromitsuen
dc.contributor.authorAkamatsu, Shusukeen
dc.contributor.authorYoshimura, Kojien
dc.contributor.authorMatsuda, Fumihikoen
dc.contributor.authorFurukawa, Toshi A.en
dc.contributor.authorEfthimiou, Orestisen
dc.contributor.authorOgawa, Osamuen
dc.contributor.alternative船田, 哲ja
dc.contributor.alternative羅, 妍ja
dc.contributor.alternative吉岡, 貴史ja
dc.contributor.alternative瀬藤, 和也ja
dc.contributor.alternative田原, 康玄ja
dc.contributor.alternative赤松, 秀輔ja
dc.contributor.alternative松田, 文彦ja
dc.contributor.alternative古川, 壽亮ja
dc.contributor.alternative小川, 修ja
dc.date.accessioned2022-11-25T05:53:22Z-
dc.date.available2022-11-25T05:53:22Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/277495-
dc.description.abstractBACKGROUND: An accurate prediction model could identify high-risk subjects of incident Overactive bladder (OAB) among the general population and enable early prevention which may save on the related medical costs. However, no efficient model has been developed for predicting incident OAB. In this study, we will develop a model for predicting the onset of OAB at 5-year in the general population setting. METHODS: Data will be obtained from the Nagahama Cohort Project, a longitudinal, general population cohort study. The baseline characteristics were measured between Nov 28, 2008 and Nov 28, 2010, and follow-up was performed every 5 years. From the total of 9, 764 participants (male: 3, 208, female: 6, 556) at baseline, we will exclude participants who could not attend the follow-up assessment and those who were defined as having OAB at baseline. The outcome will be incident OAB defined using the Overactive Bladder Symptom Score (OABSS) at follow-up assessment. Baseline questionnaires (demographic, health behavior, comorbidities and OABSS) and blood test data will be included as predictors. We will develop a logistic regression model utilizing shrinkage methods (LASSO penalization method). Model performance will be evaluated by discrimination and calibration. Net benefit will be evaluated by decision curve analysis. We will perform an internal validation and a temporal validation of the model. We will develop a web-based application to visualize the prediction model and facilitate its use in clinical practice. DISCUSSION: This will be the first study to develop a model to predict the incidence of OAB.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.publisherBMCen
dc.rights© The Author(s) 2021.en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectUrinary bladderen
dc.subjectLongitudinal analysisen
dc.subjectCohort studyen
dc.subjectRisk calculatoren
dc.titleProtocol for development and validation of a prediction model for 5-year risk of incident overactive bladder in the general population: the Nagahama studyen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBMC Urologyen
dc.identifier.volume21-
dc.relation.doi10.1186/s12894-021-00848-x-
dc.textversionpublisher-
dc.identifier.artnum78-
dc.identifier.pmid33985490-
dcterms.accessRightsopen access-
datacite.awardNumber25293141-
datacite.awardNumber26670313-
datacite.awardNumber26293198-
datacite.awardNumber17H04182-
datacite.awardNumber17H04126-
datacite.awardNumber17H04123-
datacite.awardNumber18K18450-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-25293141/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26670313/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26293198/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H04182/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H04126/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H04123/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K18450/-
dc.identifier.eissn1471-2490-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle高齢者フレイルティの包括的疫学研究ja
jpcoar.awardTitle家庭血圧計を用いた血圧日内変動測定の妥当性検証と予後予測能の検討ja
jpcoar.awardTitle気道疾患の肺機能経年変化と全身病態に対する睡眠障害の影響と新治療体系の構築ja
jpcoar.awardTitle気道疾患進行と睡眠障害合併時に対する統合的オミックス解析とバイオマーカーの探索ja
jpcoar.awardTitle診察室外血圧の統合データベース構築と循環器リスクの比較評価ja
jpcoar.awardTitleフレイルと潜在性臓器障害との多重連関の理解深化のための学際的疫学研究ja
jpcoar.awardTitle全人的コホート研究による認知症アトリスク高齢者を観取するための評価モデルの開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons