このアイテムのアクセス数: 80

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
arXiv.2203.11667.pdf439.68 kBAdobe PDF見る/開く
タイトル: TS-Reconfiguration of $k$-Path Vertex Covers in Caterpillars for $k geq 4$
著者: HOANG, Duc Anh
キーワード: Reconfiguration problems
Polynomial-time algorithms
$k$-Path vertex covers
Caterpillars
Token sliding
発行日: 22-Mar-2022
開始ページ: 1
終了ページ: 12
抄録: A $k$-path vertex cover ($k$-PVC) of a graph $G$ is a vertex subset $I$ such that each path on $k$ vertices in $G$ contains at least one member of $I$. Imagine that a token is placed on each vertex of a $k$-PVC. Given two $k$-PVCs $I, J$ of a graph $G$, the $k$-Path Vertex Cover Reconfiguration ($k$-PVCR) under Token Sliding ($mathsf{TS}$) problem asks if there is a sequence of $k$-PVCs between $I$ and $J$ where each intermediate member is obtained from its predecessor by sliding a token from some vertex to one of its unoccupied neighbors. This problem is known to be $mathtt{PSPACE}$-complete even for planar graphs of maximum degree $3$ and bounded treewidth and can be solved in polynomial time for paths and cycles. Its complexity for trees remains unknown. In this paper, for $k geq 4$, we present a polynomial-time algorithm that solves $k$-PVCR under $mathsf{TS}$ for caterpillars (i.e., trees formed by attaching leaves to a path).
著作権等: This paper is made available under the CC BY-SA 4.0 license.
URI: http://hdl.handle.net/2433/277667
DOI(出版社版): 10.48550/arXiv.2203.11667
出現コレクション:プレプリント

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons