このアイテムのアクセス数: 211

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
arXiv.2208.07199.pdf606.11 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHOANG, Duc Anhen
dc.date.accessioned2022-12-07T04:49:18Z-
dc.date.available2022-12-07T04:49:18Z-
dc.date.issued2022-08-15-
dc.identifier.urihttp://hdl.handle.net/2433/277668-
dc.descriptionThis PDF is not the same as the Accepted Paper for 'WALCOM 2023'.en
dc.description.abstractFor a fixed positive integer $d geq 2$, a distance-$d$ independent set (D$d$IS) of a graph is a vertex subset whose distance between any two members is at least $d$. Imagine that there is a token placed on each member of a D$d$IS. Two D$d$ISs are adjacent under Token Sliding ($mathsf{TS}$) if one can be obtained from the other by moving a token from one vertex to one of its unoccupied adjacent vertices. Under Token Jumping ($mathsf{TJ}$), the target vertex needs not to be adjacent to the original one. The Distance-$d$ Independent Set Reconfiguration (D$d$ISR) problem under $mathsf{TS}/mathsf{TJ}$ asks if there is a corresponding sequence of adjacent D$d$ISs that transforms one given D$d$IS into another. The problem for $d = 2$, also known as the Independent Set Reconfiguration problem, has been well-studied in the literature and its computational complexity on several graph classes has been known. In this paper, we study the computational complexity of D$d$ISR on different graphs under $mathsf{TS}$ and $mathsf{TJ}$ for any fixed $d geq 3$. On chordal graphs, we show that D$d$ISR under $mathsf{TJ}$ is in $mathtt{P}$ when $d$ is even and $mathtt{PSPACE}$-complete when $d$ is odd. On split graphs, there is an interesting complexity dichotomy: D$d$ISR is $mathtt{PSPACE}$-complete for $d = 2$ but in $mathtt{P}$ for $d=3$ under $mathsf{TS}$, while under $mathsf{TJ}$ it is in $mathtt{P}$ for $d = 2$ but $mathtt{PSPACE}$-complete for $d = 3$. Additionally, certain well-known hardness results for $d = 2$ on general graphs, perfect graphs, planar graphs of maximum degeree three and bounded bandwidth can be extended for $d geq 3$.en
dc.language.isoeng-
dc.rightsThis paper is made available under the CC BY-SA 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectreconfiguration problemen
dc.subjectdistance-d independent seten
dc.subjectcomputational complexityen
dc.subjecttoken slidingen
dc.subjecttoken jumpingen
dc.subject05C85en
dc.subject68R10en
dc.titleOn The Complexity of Distance-$d$ Independent Set Reconfigurationen
dc.typeother-
dc.type.niitypeOthers-
dc.identifier.spage1-
dc.identifier.epage14-
dc.relation.doi10.48550/arXiv.2208.07199-
dc.textversionauthor-
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.relation.urlhttps://www.walcom2023.conf.nycu.edu.tw/accepted-papers-
dcterms.accessRightsopen access-
datacite.awardNumber20H05964-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05964/-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle大規模離散構造の理解と革新的アルゴリズム基盤の創出ja
出現コレクション:プレプリント

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons