このアイテムのアクセス数: 211
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
arXiv.2208.07199.pdf | 606.11 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | HOANG, Duc Anh | en |
dc.date.accessioned | 2022-12-07T04:49:18Z | - |
dc.date.available | 2022-12-07T04:49:18Z | - |
dc.date.issued | 2022-08-15 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277668 | - |
dc.description | This PDF is not the same as the Accepted Paper for 'WALCOM 2023'. | en |
dc.description.abstract | For a fixed positive integer $d geq 2$, a distance-$d$ independent set (D$d$IS) of a graph is a vertex subset whose distance between any two members is at least $d$. Imagine that there is a token placed on each member of a D$d$IS. Two D$d$ISs are adjacent under Token Sliding ($mathsf{TS}$) if one can be obtained from the other by moving a token from one vertex to one of its unoccupied adjacent vertices. Under Token Jumping ($mathsf{TJ}$), the target vertex needs not to be adjacent to the original one. The Distance-$d$ Independent Set Reconfiguration (D$d$ISR) problem under $mathsf{TS}/mathsf{TJ}$ asks if there is a corresponding sequence of adjacent D$d$ISs that transforms one given D$d$IS into another. The problem for $d = 2$, also known as the Independent Set Reconfiguration problem, has been well-studied in the literature and its computational complexity on several graph classes has been known. In this paper, we study the computational complexity of D$d$ISR on different graphs under $mathsf{TS}$ and $mathsf{TJ}$ for any fixed $d geq 3$. On chordal graphs, we show that D$d$ISR under $mathsf{TJ}$ is in $mathtt{P}$ when $d$ is even and $mathtt{PSPACE}$-complete when $d$ is odd. On split graphs, there is an interesting complexity dichotomy: D$d$ISR is $mathtt{PSPACE}$-complete for $d = 2$ but in $mathtt{P}$ for $d=3$ under $mathsf{TS}$, while under $mathsf{TJ}$ it is in $mathtt{P}$ for $d = 2$ but $mathtt{PSPACE}$-complete for $d = 3$. Additionally, certain well-known hardness results for $d = 2$ on general graphs, perfect graphs, planar graphs of maximum degeree three and bounded bandwidth can be extended for $d geq 3$. | en |
dc.language.iso | eng | - |
dc.rights | This paper is made available under the CC BY-SA 4.0 license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | - |
dc.subject | reconfiguration problem | en |
dc.subject | distance-d independent set | en |
dc.subject | computational complexity | en |
dc.subject | token sliding | en |
dc.subject | token jumping | en |
dc.subject | 05C85 | en |
dc.subject | 68R10 | en |
dc.title | On The Complexity of Distance-$d$ Independent Set Reconfiguration | en |
dc.type | other | - |
dc.type.niitype | Others | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 14 | - |
dc.relation.doi | 10.48550/arXiv.2208.07199 | - |
dc.textversion | author | - |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.relation.url | https://www.walcom2023.conf.nycu.edu.tw/accepted-papers | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 20H05964 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05964/ | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 大規模離散構造の理解と革新的アルゴリズム基盤の創出 | ja |
出現コレクション: | プレプリント |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス