このアイテムのアクセス数: 164
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
arXiv.2203.16861.pdf | 853.87 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | AVIS, David | en |
dc.contributor.author | HOANG, Duc Anh | en |
dc.date.accessioned | 2022-12-12T06:36:32Z | - |
dc.date.available | 2022-12-12T06:36:32Z | - |
dc.date.issued | 2022-12-08 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277778 | - |
dc.description.abstract | An independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $mathsf{TS}_k$-reconfiguration graph into smaller pieces. | en |
dc.language.iso | eng | - |
dc.rights | This paper is made available under the CC BY-SA 4.0 license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | - |
dc.subject | Token sliding | en |
dc.subject | Reconfiguration graph | en |
dc.subject | Independent set | en |
dc.subject | Structure | en |
dc.subject | Realizability | en |
dc.subject | Geometric graph | en |
dc.title | On Reconfiguration Graphs of Independent Sets under Token Sliding | en |
dc.type | other | - |
dc.type.niitype | Others | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 17 | - |
dc.relation.doi | 10.48550/arXiv.2203.16861 | - |
dc.textversion | author | - |
dc.address | Graduate School of Informatics, Kyoto University; School of Computer Science, McGill University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18H05291 | - |
datacite.awardNumber | 20H00579 | - |
datacite.awardNumber | 20H05965 | - |
datacite.awardNumber | 20H05964 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18H05291/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20H00579/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05965/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05964/ | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 巨大グラフとビッグデータ解析の基礎基盤 : 理論研究と高速アルゴリズム開発 | ja |
jpcoar.awardTitle | 量子アルゴリズム・計算量・浅層回路と量子コンピュータ実機実験による量子優位性研究 | ja |
jpcoar.awardTitle | 新計算モデルにおけるアルゴリズム・最適化 | ja |
jpcoar.awardTitle | 大規模離散構造の理解と革新的アルゴリズム基盤の創出 | ja |
出現コレクション: | プレプリント |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス