このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
arXiv.2203.16861.pdf853.87 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAVIS, Daviden
dc.contributor.authorHOANG, Duc Anhen
dc.date.accessioned2022-12-12T06:36:32Z-
dc.date.available2022-12-12T06:36:32Z-
dc.date.issued2022-12-08-
dc.identifier.urihttp://hdl.handle.net/2433/277778-
dc.description.abstractAn independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $mathsf{TS}_k$-reconfiguration graph into smaller pieces.en
dc.language.isoeng-
dc.rightsThis paper is made available under the CC BY-SA 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectToken slidingen
dc.subjectReconfiguration graphen
dc.subjectIndependent seten
dc.subjectStructureen
dc.subjectRealizabilityen
dc.subjectGeometric graphen
dc.titleOn Reconfiguration Graphs of Independent Sets under Token Slidingen
dc.typeother-
dc.type.niitypeOthers-
dc.identifier.spage1-
dc.identifier.epage17-
dc.relation.doi10.48550/arXiv.2203.16861-
dc.textversionauthor-
dc.addressGraduate School of Informatics, Kyoto University; School of Computer Science, McGill Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.awardNumber18H05291-
datacite.awardNumber20H00579-
datacite.awardNumber20H05965-
datacite.awardNumber20H05964-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18H05291/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20H00579/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05965/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PLANNED-20H05964/-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle巨大グラフとビッグデータ解析の基礎基盤 : 理論研究と高速アルゴリズム開発ja
jpcoar.awardTitle量子アルゴリズム・計算量・浅層回路と量子コンピュータ実機実験による量子優位性研究ja
jpcoar.awardTitle新計算モデルにおけるアルゴリズム・最適化ja
jpcoar.awardTitle大規模離散構造の理解と革新的アルゴリズム基盤の創出ja
出現コレクション:プレプリント

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons