このアイテムのアクセス数: 128

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2022.3140332.pdf1.5 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOtsu, Ryoen
dc.contributor.authorShinkuma, Ryoichien
dc.contributor.authorSato, Takehiroen
dc.contributor.authorOki, Eijien
dc.contributor.authorHasegawa, Daikien
dc.contributor.authorFuruya, Toshikazuen
dc.contributor.alternative大津, 龍ja
dc.contributor.alternative新熊, 亮一ja
dc.contributor.alternative佐藤, 丈博ja
dc.contributor.alternative大木, 英司ja
dc.date.accessioned2022-12-16T00:00:42Z-
dc.date.available2022-12-16T00:00:42Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/277851-
dc.description.abstractThree-dimensional (3D) sensor networks using multiple light-detection-and-ranging (LIDAR) sensors are good for smart monitoring of spots, such as intersections, with high potential risk of road-traffic accidents. The image sensors must share the strictly limited computation capacity of an edge computer. To have the computation speeds required from real-time applications, the system must have a short computation delay while maintaining the quality of the output, e.g., the accuracy of the object detection. This paper proposes a spatial-importance-based computation scheme that can be implemented on an edge computer of image-sensor networks composed of 3D sensors. The scheme considers regions where objects exist as more likely to be ones of higher spatial importance. It processes point-cloud data from each region according to the spatial importance of that region. By prioritizing regions with high spatial importance, it shortens the computation delay involved in the object detection. A point-cloud dataset obtained by a moving car equipped with a LIDAR unit was used to numerically evaluate the proposed scheme. The results indicate that the scheme shortens the delay in object detection.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectThree-dimensional displaysen
dc.subjectObject detectionen
dc.subjectPoint cloud compressionen
dc.subjectImage edge detectionen
dc.subjectProposalsen
dc.subjectMonitoringen
dc.subjectReal-time systemsen
dc.subjectSmart monitoringen
dc.subjectobject detectionen
dc.subjectLIDAR sensoren
dc.subjectpoint clouden
dc.subjectedge computingen
dc.titleSpatial-Importance-Based Computation Scheme for Real-Time Object Detection From 3D Sensor Dataen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Accessen
dc.identifier.volume10-
dc.identifier.spage5672-
dc.identifier.epage5680-
dc.relation.doi10.1109/ACCESS.2022.3140332-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber21H03427-
datacite.awardNumber21H03426-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H03427/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H03426/-
dc.identifier.eissn2169-3536-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle因果関係情報センシング基盤ja
jpcoar.awardTitle処理性能の不確定性を考慮したサービスチェインのマッピングとスケジューリング方式ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons