このアイテムのアクセス数: 103
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ACCESS.2022.3143612.pdf | 1.56 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Inoue, Masaaki | en |
dc.contributor.author | Pham, Thong | en |
dc.contributor.author | Shimodaira, Hidetoshi | en |
dc.contributor.alternative | 井上, 雅章 | ja |
dc.contributor.alternative | 下平, 英寿 | ja |
dc.date.accessioned | 2022-12-16T00:02:47Z | - |
dc.date.available | 2022-12-16T00:02:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277853 | - |
dc.description.abstract | Temporal datasets that describe complex interactions between individuals over time are increasingly common in various domains. Conventional graph representations of such datasets may lead to information loss since higher-order relationships between more than two individuals must be broken into multiple pairwise relationships in graph representations. In those cases, a hypergraph representation is preferable since it can preserve higher-order relationships by using hyperedges. However, existing hypergraph models of temporal complex networks often employ some data-independent growth mechanism, which is the linear preferential attachment in most cases. In principle, this pre-specification is undesirable since it completely ignores the data at hand. Our work proposes a new hypergraph growth model with a data-driven preferential attachment mechanism estimated from observed data. A key component of our method is a recursive formula that allows us to overcome a bottleneck in computing the normalizing factors in our model. We also treat an often-neglected selection bias in modeling the emergence of new edges with new nodes. Fitting the proposed hypergraph model to 13 real-world datasets from diverse domains, we found that all estimated preferential attachment functions deviates substantially from the linear form. This demonstrates the need of doing away with the linear preferential attachment assumption and adopting a data-driven approach. We also showed that our model outperformed conventional models in replicating the observed first-order and second-order structures in these real-world datasets. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Data models | en |
dc.subject | Computational modeling | en |
dc.subject | Complex networks | en |
dc.subject | Licenses | en |
dc.subject | Kernel | en |
dc.subject | Collaboration | en |
dc.subject | Probability distribution | en |
dc.subject | co-authorship networks | en |
dc.subject | complex networks | en |
dc.subject | hypergraphs | en |
dc.subject | preferential attachment | en |
dc.subject | selection bias | en |
dc.title | A Hypergraph Approach for Estimating Growth Mechanisms of Complex Networks | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE Access | en |
dc.identifier.volume | 10 | - |
dc.identifier.spage | 35012 | - |
dc.identifier.epage | 35025 | - |
dc.relation.doi | 10.1109/ACCESS.2022.3143612 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K20231 | - |
datacite.awardNumber | 20H04148 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20231/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H04148/ | - |
dc.identifier.eissn | 2169-3536 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 動的情報なしのネットワークに対する動的特徴を表す成長機構の推定方法の構築 | ja |
jpcoar.awardTitle | 多ドメイン関連性データのグラフ埋め込みによる表現学習 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス