このアイテムのアクセス数: 83
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
arXiv.2301.00317.pdf | 797.72 kB | Adobe PDF | 見る/開く |
タイトル: | A Note On Acyclic Token Sliding Reconfiguration Graphs of Independent Sets |
著者: | AVIS, David HOANG, Duc Anh |
発行日: | 1-Jan-2023 |
開始ページ: | 1 |
終了ページ: | 19 |
抄録: | We continue the study of token sliding reconfiguration graphs of independent sets initiated by the authors in an earlier paper (arXiv:2203.16861). Two of the topics in that paper were to study which graphs $G$ are token sliding graphs and which properties of a graph are inherited by a token sliding graph. In this paper we continue this study specializing on the case of when $G$ and/or its token sliding graph $mathsf{TS}_k(G)$ is a tree or forest, where $k$ is the size of the independent sets considered. We consider two problems. The first is to find necessary and sufficient conditions on $G$ for $mathsf{TS}_k(G)$ to be a forest. The second is to find necessary and sufficient conditions for a tree or forest to be a token sliding graph. For the first problem we give a forbidden subgraph characterization for the cases of $k=2, 3$. For the second problem we show that for every $k$-ary tree $T$ there is a graph $G$ for which $mathsf{TS}_{k+1}(G)$ is isomorphic to $T$. A number of other results are given along with a join operation that aids in the construction of $mathsf{TS}_k(G)$-graphs. |
著作権等: | This paper is made available under the CC BY-SA 4.0 license. |
URI: | http://hdl.handle.net/2433/278262 |
DOI(出版社版): | 10.48550/arXiv.2301.00317 |
出現コレクション: | プレプリント |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス