ダウンロード数: 44
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s10955-017-1850-7.pdf | 1.68 MB | Adobe PDF | 見る/開く |
タイトル: | Gradient Divergence of Fluid-Dynamic Quantities in Rarefied Gases on Smooth Boundaries |
著者: | Takata, Shigeru https://orcid.org/0000-0001-6787-6777 (unconfirmed) Taguchi, Satoshi https://orcid.org/0000-0002-0661-7058 (unconfirmed) |
著者名の別形: | 髙田, 滋 田口, 智清 |
キーワード: | Boltzmann equation Kinetic theory Rarefied gas Singularity |
発行日: | Sep-2017 |
出版者: | Springer Nature |
誌名: | Journal of Statistical Physics |
巻: | 168 |
号: | 6 |
開始ページ: | 1319 |
終了ページ: | 1352 |
抄録: | The behavior of fluid-dynamic (or macroscopic) quantities of rarefied gases is studied, with a special interest in its non-analytic feature near boundaries. It is shown that their gradients normal to the boundary diverge even if the boundary is smooth, irrespective of the value of the (nonzero) Knudsen number. The boundary geometry determines the diverging rate. On a planar or concave boundary, the logarithmic divergence lns should be observed, where s is the normal distance from the boundary. In other cases, the diverging rate is enhanced to be the inverse-power s[−1/n], where n(≥2) is the degree of the dominant terms of the polynomial which locally represents the boundary. Some numerical demonstrations are given as well. |
著作権等: | This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10955-017-1850-7 The full-text file will be made open to the public on 16 August 2018 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/278293 |
DOI(出版社版): | 10.1007/s10955-017-1850-7 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。