このアイテムのアクセス数: 98

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jnlp.29.762.pdf1.02 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAlkhaldi, Tareqen
dc.contributor.authorChu, Chenhuien
dc.contributor.authorKurohashi, Sadaoen
dc.contributor.alternative黒橋, 禎夫ja
dc.date.accessioned2023-01-11T02:35:16Z-
dc.date.available2023-01-11T02:35:16Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/278342-
dc.description.abstractRecent research shows that Transformer-based language models (LMs) store considerable factual knowledge from the unstructured text datasets on which they are pre-trained. The existence and amount of such knowledge have been investigated by probing pre-trained Transformers to answer questions without accessing any external context or knowledge (also called closed-book question answering (QA)). However, this factual knowledge is spread over the parameters inexplicably. The parts of the model most responsible for finding an answer only from a question are unclear. This study aims to understand which parts are responsible for the Transformer-based T5 reaching an answer in a closed-book QA setting. Furthermore, we introduce a head importance scoring method and compare it with other methods on three datasets. We investigate important parts by looking inside the attention heads in a novel manner. We also investigate why some heads are more critical than others and suggest a good identification approach. We demonstrate that some model parts are more important than others in retaining knowledge through a series of pruning experiments. We also investigate the roles of encoder and decoder in a closed-book setting.en
dc.language.isoeng-
dc.publisher言語処理学会ja
dc.publisher.alternativeAssociation for Natural Language Processingen
dc.rights© 2022 The Association for Natural Language Processingen
dc.rightsLicensed under CC BY 4.0en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectAnalysisen
dc.subjectAttention Componentsen
dc.subjectQuestion Answeringen
dc.subjectTransformersen
dc.titleA Peek Into the Memory of T5: Investigating the Factual Knowledge Memory in a Closed-Book QA Setting and Finding Responsible Partsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitle自然言語処理ja
dc.identifier.volume29-
dc.identifier.issue3-
dc.identifier.spage762-
dc.identifier.epage784-
dc.relation.doi10.5715/jnlp.29.762-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.pissn1340-7619-
dc.identifier.eissn2185-8314-
dc.identifier.jtitle-alternativeJournal of Natural Language Processingen
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons