このアイテムのアクセス数: 98
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jnlp.29.762.pdf | 1.02 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Alkhaldi, Tareq | en |
dc.contributor.author | Chu, Chenhui | en |
dc.contributor.author | Kurohashi, Sadao | en |
dc.contributor.alternative | 黒橋, 禎夫 | ja |
dc.date.accessioned | 2023-01-11T02:35:16Z | - |
dc.date.available | 2023-01-11T02:35:16Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/278342 | - |
dc.description.abstract | Recent research shows that Transformer-based language models (LMs) store considerable factual knowledge from the unstructured text datasets on which they are pre-trained. The existence and amount of such knowledge have been investigated by probing pre-trained Transformers to answer questions without accessing any external context or knowledge (also called closed-book question answering (QA)). However, this factual knowledge is spread over the parameters inexplicably. The parts of the model most responsible for finding an answer only from a question are unclear. This study aims to understand which parts are responsible for the Transformer-based T5 reaching an answer in a closed-book QA setting. Furthermore, we introduce a head importance scoring method and compare it with other methods on three datasets. We investigate important parts by looking inside the attention heads in a novel manner. We also investigate why some heads are more critical than others and suggest a good identification approach. We demonstrate that some model parts are more important than others in retaining knowledge through a series of pruning experiments. We also investigate the roles of encoder and decoder in a closed-book setting. | en |
dc.language.iso | eng | - |
dc.publisher | 言語処理学会 | ja |
dc.publisher.alternative | Association for Natural Language Processing | en |
dc.rights | © 2022 The Association for Natural Language Processing | en |
dc.rights | Licensed under CC BY 4.0 | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Analysis | en |
dc.subject | Attention Components | en |
dc.subject | Question Answering | en |
dc.subject | Transformers | en |
dc.title | A Peek Into the Memory of T5: Investigating the Factual Knowledge Memory in a Closed-Book QA Setting and Finding Responsible Parts | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | 自然言語処理 | ja |
dc.identifier.volume | 29 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 762 | - |
dc.identifier.epage | 784 | - |
dc.relation.doi | 10.5715/jnlp.29.762 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1340-7619 | - |
dc.identifier.eissn | 2185-8314 | - |
dc.identifier.jtitle-alternative | Journal of Natural Language Processing | en |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス