このアイテムのアクセス数: 94
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jfm.2014.200.pdf | 641.94 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Aoki, Kazuo | en |
dc.contributor.author | Takata, Shigeru | en |
dc.contributor.author | Tomota, Tatsunori | en |
dc.contributor.alternative | 青木, 一生 | ja |
dc.contributor.alternative | 髙田, 滋 | ja |
dc.contributor.alternative | 友田, 達規 | ja |
dc.date.accessioned | 2023-01-18T04:23:31Z | - |
dc.date.available | 2023-01-18T04:23:31Z | - |
dc.date.issued | 2014-06-10 | - |
dc.identifier.uri | http://hdl.handle.net/2433/278477 | - |
dc.description.abstract | An oblate spheroid, the respective hemispheroids of which are kept at different uniform temperatures, placed in a rarefied gas at rest is considered. The explicit formula for the force acting on the spheroid (radiometric force) is obtained for small Knudsen numbers. This is a model of a vane of the Crookes radiometer. The analysis is performed for a general axisymmetric distribution of the surface temperature of the spheroid, allowing abrupt changes. Although the generalized slip flow theory, established by Sone (Rarefied Gas Dynamics, vol. 1, 1969, pp. 243–253), is available for general rarefied gas flows at small Knudsen numbers, it cannot be applied to the present problem because of the abrupt temperature changes. However, if it is combined with the symmetry relations for the linearized Boltzmann equation developed recently by Takata (J. Stat. Phys., vol. 136, 2009, pp. 751–784), one can bypass the difficulty. To be more specific, the force acting on the spheroid in the present problem can be generated from the solution of the adjoint problem to which the generalized slip flow theory can be applied, i.e. the problem in which the same spheroid with a uniform surface temperature is placed in a uniform flow of a rarefied gas. The analysis of the present paper follows this strategy. | en |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press (CUP) | en |
dc.rights | This article has been published in a revised form in Journal of Fluid Mechanics https://doi.org/10.1017/jfm.2014.200. This version is free to view and download for private research and study only. Not for re-distribution or re-use. © 2014 Cambridge University Press. | en |
dc.rights | The full-text file will be made open to the public on 10 December 2014 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | Kinetic theory | en |
dc.subject | Molecular dynamics | en |
dc.subject | Microfluidics | en |
dc.subject | Non-continuum effects | en |
dc.title | A force acting on an oblate spheroid with discontinuous surface temperature in a slightly rarefied gas | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Fluid Mechanics | en |
dc.identifier.volume | 748 | - |
dc.identifier.spage | 712 | - |
dc.identifier.epage | 730 | - |
dc.relation.doi | 10.1017/jfm.2014.200 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2014-12-10 | - |
datacite.awardNumber | 21656026 | - |
datacite.awardNumber | 23360083 | - |
datacite.awardNumber | 23246034 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21656026/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23360083/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-23246034/ | - |
dc.identifier.pissn | 0022-1120 | - |
dc.identifier.eissn | 1469-7645 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ボルツマン方程式の不連続境界条件とすべり境界条件の一般化 | ja |
jpcoar.awardTitle | 微小系気体流に対する一般すべり流理論の整備と非定常系への拡張 | ja |
jpcoar.awardTitle | 気液界面の分子動力学と分子気体力学の包括的統合による非線形非平衡流体力学の新展開 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。