このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
5.0062329.pdf12.05 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOrikasa, Yukien
dc.contributor.authorYamamoto, Kentaroen
dc.contributor.authorShimizu, Takeshien
dc.contributor.authorUchimoto, Yoshiharuen
dc.contributor.alternative折笠, 有基ja
dc.contributor.alternative山本, 健太郎ja
dc.contributor.alternative清水, 剛志ja
dc.contributor.alternative内本, 喜晴ja
dc.date.accessioned2023-01-27T06:53:34Z-
dc.date.available2023-01-27T06:53:34Z-
dc.date.issued2022-03-
dc.identifier.urihttp://hdl.handle.net/2433/278909-
dc.description.abstractThe key to improving the performance of lithium-ion batteries is to precisely elucidate the temporal and spatial hierarchical structure of the battery. Lithium-ion batteries consist of cathodes and anodes and a separator containing an electrolyte. The cathodes and anodes of lithium-ion batteries are made of a composite material consisting of an active material, a conductive material, and a binder to form a complex three-dimensional structure. The reaction proceeds as lithium ions are repeatedly inserted into and removed from the active material. Therefore, the lattice of the active material is restructured due to ion diffusion, which results in phase change. At the active material–electrolyte interface, the insertion and de-insertion of lithium ions proceed with the charge transfer reaction. The charge–discharge reaction of a lithium-ion battery is a nonequilibrium state due to the interplay of multiple phenomena. Analysis after disassembling a battery, which is performed in conventional battery research, does not provide an accurate understanding of the dominant factors of the reaction rate and the degradation mechanism, in some cases. This review introduces the results of research on the temporal and spatial hierarchical structure of lithium-ion batteries, focusing on operando measurements taken during charge–discharge reactions. Chapter 1 provides an overview of the hierarchical reaction mechanism of lithium-ion batteries. Chapter 2 introduces the operando measurement technique, which is useful for analysis. Chapter 3 describes the reaction at the electrode–electrolyte interface, which is the reaction field, and Chapter 4 discusses the nonequilibrium structural change caused by the two-phase reaction in the active material. Chapter 5 introduces the study of the unique reaction heterogeneity of a composite electrode, which enables practical energy storage. Understanding the hierarchical reaction mechanism will provide useful information for the design of lithium-ion batteries and next-generation batteries.en
dc.language.isoeng-
dc.publisherAIP Publishingen
dc.rights© 2022 Author(s).en
dc.rightsAll article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.titleMultiscale and hierarchical reaction mechanism in a lithium-ion batteryen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleChemical Physics Reviewsen
dc.identifier.volume3-
dc.identifier.issue1-
dc.relation.doi10.1063/5.0062329-
dc.textversionpublisher-
dc.identifier.artnum011305-
dcterms.accessRightsopen access-
dc.identifier.eissn2688-4070-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons