ダウンロード数: 49

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
pnas.2121147119.pdf3.41 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSakamoto, Ryotaen
dc.contributor.authorIzri, Zianeen
dc.contributor.authorShimamoto, Yutaen
dc.contributor.authorMiyazaki, Makitoen
dc.contributor.authorMaeda, Yusuke T.en
dc.contributor.alternative坂本, 遼太ja
dc.contributor.alternative島本, 勇太ja
dc.contributor.alternative宮﨑, 牧人ja
dc.contributor.alternative前多, 裕介ja
dc.date.accessioned2023-01-29T23:58:18Z-
dc.date.available2023-01-29T23:58:18Z-
dc.date.issued2022-07-26-
dc.identifier.urihttp://hdl.handle.net/2433/278933-
dc.description動きまわる人工細胞、その鍵は摩擦にあり --細胞が狭い空間を利用して運動する仕組みを解明--. 京都大学プレスリリース. 2022-07-21.ja
dc.description.abstractCell migration in confined environments is fundamental for diverse biological processes from cancer invasion to leukocyte trafficking. The cell body is propelled by the contractile force of actomyosin networks transmitted from the cell membrane to the external substrates. However, physical determinants of actomyosin-based migration capacity in confined environments are not fully understood. Here, we develop an in vitro migratory cell model, where cytoplasmic actomyosin networks are encapsulated into droplets surrounded by a lipid monolayer membrane. We find that the droplet can move when the actomyosin networks are bound to the membrane, in which the physical interaction between the contracting actomyosin networks and the membrane generates a propulsive force. The droplet moves faster when it has a larger contact area with the substrates, while narrower confinement reduces the migration speed. By combining experimental observations and active gel theory, we propose a mechanism where the balance between sliding friction force, which is a reaction force of the contractile force, and viscous drag determines the migration speed, providing a physical basis of actomyosin-based motility in confined environments.en
dc.language.isoeng-
dc.publisherProceedings of the National Academy of Sciencesen
dc.rightsCopyright © 2022 the Author(s). Published by PNAS.en
dc.rightsThis article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectACTIN CYTOSKELETONen
dc.subjectRECONSTITUTED SYSTEMSen
dc.subjectMICROFLUIDICSen
dc.subjectCELL MIGRATIONen
dc.subjectACTIVE GELSen
dc.titleGeometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized dropleten
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleProceedings of the National Academy of Sciencesen
dc.identifier.volume119-
dc.identifier.issue30-
dc.relation.doi10.1073/pnas.2121147119-
dc.textversionpublisher-
dc.identifier.artnume2121147119-
dc.addressDepartment of Physics, Graduate School of Science, Kyushu Universityen
dc.addressSchool of Physics and Astronomy, University of Minnesotaen
dc.addressDepartment of Chromosome Science, National Institute of Geneticsen
dc.addressHakubi Center for Advanced Research, Kyoto University; Department of Physics, Graduate School of Science, Kyoto University; Institut Curie, Paris Sciences et Lettres Research University; PRESTO, Japan Science and Technology Agencyen
dc.addressDepartment of Physics, Graduate School of Science, Kyushu Universityen
dc.identifier.pmid35857875-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2022-07-21-2-
dcterms.accessRightsopen access-
datacite.awardNumber20H01872-
datacite.awardNumber19H03201-
datacite.awardNumber18H05427-
datacite.awardNumber19H05393-
datacite.awardNumber19J20035-
datacite.awardNumber21K18605-
datacite.awardNumber20K21404-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01872/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H03201/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-18H05427/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H05393/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J20035/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K18605/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K21404/-
dc.identifier.pissn0027-8424-
dc.identifier.eissn1091-6490-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleアクティブマターのキラルな秩序渦と乱流状態の幾何的普遍性の研究ja
jpcoar.awardTitle分裂期染色体とその構築因子の力学感受メカニズムja
jpcoar.awardTitle発動分子の自律的運動と機能設計のエネルギー論的研究ja
jpcoar.awardTitle生体発動分子を利用した自己駆動型人工細胞の開発と理論解析による機能の最適化ja
jpcoar.awardTitle生体分子モーターが躍動する非平衡界面と細胞の破れた対称性の物理学ja
jpcoar.awardTitleアクティブゲルで切り拓く細胞の対称性と運動原理の非平衡力学ja
jpcoar.awardTitle新規力計測プローブを用いた哺乳類卵母細胞の紡錘体エラー発生メカニズムの探究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons