ダウンロード数: 49

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
IJART.2022.10045168.pdf1 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHung, Mai Congen
dc.contributor.authorTosa, Naokoen
dc.contributor.authorNakatsu, Ryoheien
dc.contributor.authorKusumi, Takashien
dc.contributor.alternative土佐, 尚子ja
dc.contributor.alternative中津, 良平ja
dc.contributor.alternative楠見, 孝ja
dc.date.accessioned2023-02-01T07:46:37Z-
dc.date.available2023-02-01T07:46:37Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/278993-
dc.description.abstractGenerative adversarial networks (GANs) are AI technology that can achieve transformation between two image sets. Using GANs, the authors carried out a comparison among several artwork sets with four art styles: Western figurative painting set, Western abstract painting set, Chinese figurative painting set, and abstract image set created by one of the authors. The transformation from a flower photo set to each of these image sets was carried out using GAN, and four image sets, for which their original artworks and art genres were anonymised, were obtained. A psychological experiment was conducted by asking subjects to fill in questionnaires. By analysing the results, the authors found that abstract paintings and figurative paintings are judged to be different and also figurative paintings in the West and East were thought to be similar. These results show that AI can work as an analysis tool to investigate differences among artworks and art genres.en
dc.language.isoeng-
dc.publisherInderscience Publishersen
dc.rightsThis is the accepted manuscript of this paper, which has been published in final form at http://doi.org/10.1504/IJART.2022.10045168en
dc.rightsThe full-text file will be made open to the public on 23 January 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectgenerative adversarial networksen
dc.subjectGANsen
dc.subjectart genreen
dc.subjectart historyen
dc.subjectstyle transferen
dc.subjectfigurative arten
dc.subjectabstract arten
dc.titleLearning of Art Style Using AI and Its Evaluation Based on Psychological Experimentsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Arts and Technologyen
dc.identifier.volume14-
dc.identifier.issue3-
dc.identifier.spage171-
dc.identifier.epage191-
dc.relation.doi10.1504/IJART.2022.10045168-
dc.textversionauthor-
dcterms.accessRightsembargoed access-
datacite.date.available2024-01-23-
dc.identifier.pissn1754-8853-
dc.identifier.eissn1754-8861-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。