このアイテムのアクセス数: 126
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ace.22014.pdf | 1.57 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kataoka, Yuki | en |
dc.contributor.author | Baba, Tomohisa | en |
dc.contributor.author | Ikenoue, Tatsuyoshi | en |
dc.contributor.author | Matsuoka, Yoshinori | en |
dc.contributor.author | Matsumoto, Junichi | en |
dc.contributor.author | Kumasawa, Junji | en |
dc.contributor.author | Tochitani, Kentaro | en |
dc.contributor.author | Funakoshi, Hiraku | en |
dc.contributor.author | Hosoda, Tomohiro | en |
dc.contributor.author | Kugimiya, Aiko | en |
dc.contributor.author | Shirano, Michinori | en |
dc.contributor.author | Hamabe, Fumiko | en |
dc.contributor.author | Iwata, Sachiyo | en |
dc.contributor.author | Kitamura, Yoshiro | en |
dc.contributor.author | Goto, Tsubasa | en |
dc.contributor.author | Hamaguchi, Shingo | en |
dc.contributor.author | Haraguchi, Takafumi | en |
dc.contributor.author | Yamamoto, Shungo | en |
dc.contributor.author | Sumikawa, Hiromitsu | en |
dc.contributor.author | Nishida, Koji | en |
dc.contributor.author | Nishida, Haruka | en |
dc.contributor.author | Ariyoshi, Koichi | en |
dc.contributor.author | Sugiura, Hiroaki | en |
dc.contributor.author | Nakagawa, Hidenori | en |
dc.contributor.author | Asaoka, Tomohiro | en |
dc.contributor.author | Yoshida, Naofumi | en |
dc.contributor.author | Oda, Rentaro | en |
dc.contributor.author | Koyama, Takashi | en |
dc.contributor.author | Iwai, Yui | en |
dc.contributor.author | Miyashita, Yoshihiro | en |
dc.contributor.author | Okazaki, Koya | en |
dc.contributor.author | Tanizawa, Kiminobu | en |
dc.contributor.author | Handa, Tomohiro | en |
dc.contributor.author | Kido, Shoji | en |
dc.contributor.author | Fukuma, Shingo | en |
dc.contributor.author | Tomiyama, Noriyuki | en |
dc.contributor.author | Hirai, Toyohiro | en |
dc.contributor.author | Ogura, Takashi | en |
dc.contributor.alternative | 片岡, 裕貴 | ja |
dc.contributor.alternative | 池之上, 辰義 | ja |
dc.contributor.alternative | 松岡, 由典 | ja |
dc.contributor.alternative | 熊澤, 淳史 | ja |
dc.contributor.alternative | 谷澤, 公伸 | ja |
dc.contributor.alternative | 半田, 知宏 | ja |
dc.contributor.alternative | 福間, 真悟 | ja |
dc.contributor.alternative | 平井, 豊博 | ja |
dc.date.accessioned | 2023-02-07T09:58:22Z | - |
dc.date.available | 2023-02-07T09:58:22Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/279165 | - |
dc.description.abstract | [BACKGROUND] We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR). [METHODS] We used 2, 928 images from a wide variety of case-control type data sources for the development and internal validation of the machine learning model. A total of 633 COVID-19 cases and 2, 295 non-COVID-19 cases were included in the study. We randomly divided cases into training and tuning sets at a ratio of 8:2. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR. [RESULTS] In external validation, the sensitivity and specificity of the model were 0.869 and 0.432, at the low-level cutoff, 0.724 and 0.721, at the high-level cutoff. Area under the receiver operating characteristic was 0.76. [CONCLUSIONS] Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner at emergency departments. Further studies are warranted to improve model specificity. | en |
dc.language.iso | eng | - |
dc.publisher | Society for Clinical Epidemiology | en |
dc.publisher.alternative | 日本臨床疫学会 | ja |
dc.rights | © 2022 Society for Clinical Epidemiology | en |
dc.rights | This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | COVID-19 | en |
dc.subject | Diagnosis | en |
dc.subject | Computer-Assisted | en |
dc.subject | Tomography | en |
dc.subject | X-Ray Computed | en |
dc.subject | Deep Learning | en |
dc.subject | COVID-19 Nucleic Acid Testing | en |
dc.title | Development and external validation of a deep learning-based computed tomography classification system for COVID-19 | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Annals of Clinical Epidemiology | en |
dc.identifier.volume | 4 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 110 | - |
dc.identifier.epage | 119 | - |
dc.relation.doi | 10.37737/ace.22014 | - |
dc.textversion | publisher | - |
dc.identifier.pmid | 38505255 | - |
dcterms.accessRights | open access | - |
dc.identifier.eissn | 2434-4338 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス