このアイテムのアクセス数: 284

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ams2.760.pdf753.13 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOkada, Yoheien
dc.contributor.authorKomukai, Shoen
dc.contributor.authorKitamura, Tetsuhisaen
dc.contributor.authorKiguchi, Takeyukien
dc.contributor.authorIrisawa, Taroen
dc.contributor.authorYamada, Tomokien
dc.contributor.authorYoshiya, Kazuhisaen
dc.contributor.authorPark, Changhwien
dc.contributor.authorNishimura, Tetsuroen
dc.contributor.authorIshibe, Takuyaen
dc.contributor.authorYagi, Yoshikien
dc.contributor.authorKishimoto, Masafumien
dc.contributor.authorInoue, Toshiyaen
dc.contributor.authorHayashi, Yasuyukien
dc.contributor.authorSogabe, Takuen
dc.contributor.authorMorooka, Takayaen
dc.contributor.authorSakamoto, Harukoen
dc.contributor.authorSuzuki, Keitaroen
dc.contributor.authorNakamura, Fumikoen
dc.contributor.authorMatsuyama, Tasukuen
dc.contributor.authorNishioka, Norihiroen
dc.contributor.authorKobayashi, Daisukeen
dc.contributor.authorMatsui, Satoshien
dc.contributor.authorHirayama, Atsushien
dc.contributor.authorYoshimura, Satoshien
dc.contributor.authorKimata, Shunsukeen
dc.contributor.authorShimazu, Takeshien
dc.contributor.authorOhtsuru, Shigeruen
dc.contributor.authorIwami, Takuen
dc.contributor.alternative岡田, 遥平ja
dc.contributor.alternative西岡, 典宏ja
dc.contributor.alternative小林, 大介ja
dc.contributor.alternative吉村, 聡志ja
dc.contributor.alternative木全, 俊介ja
dc.contributor.alternative大鶴, 繁ja
dc.contributor.alternative石見, 拓ja
dc.date.accessioned2023-02-07T10:20:38Z-
dc.date.available2023-02-07T10:20:38Z-
dc.date.issued2022-01-
dc.identifier.urihttp://hdl.handle.net/2433/279185-
dc.description.abstract[Aim] We aimed to identify subphenotypes among patients with out-of-hospital cardiac arrest (OHCA) with initial non-shockable rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological outcomes. [Methods] This study was a retrospective analysis within a multi-institutional prospective observational cohort study of OHCA patients in Osaka, Japan (the CRITICAL study). The data of adult OHCA patients with medical causes and initial non-shockable rhythm presenting with OHCA between 2012 and 2016 were included in machine learning latent class analysis models, which identified subphenotypes, and patients who presented in 2017 were included in a dataset validating the subphenotypes. We investigated associations between subphenotypes and 30-day neurological outcomes. [Results] Among the 12, 594 patients in the CRITICAL study database, 4, 849 were included in the dataset used to classify subphenotypes (median age: 75 years, 60.2% male), and 1, 465 were included in the validation dataset (median age: 76 years, 59.0% male). Latent class analysis identified four subphenotypes. Odds ratios and 95% confidence intervals for a favorable 30-day neurological outcome among patients with these subphenotypes, using group 4 for comparison, were as follows; group 1, 0.01 (0.001–0.046); group 2, 0.097 (0.051–0.171); and group 3, 0.175 (0.073–0.358). Associations between subphenotypes and 30-day neurological outcomes were validated using the validation dataset. [Conclusion] We identified four subphenotypes of OHCA patients with initial non-shockable rhythm. These patient subgroups presented with different characteristics associated with 30-day survival and neurological outcomes.en
dc.language.isoeng-
dc.publisherWileyen
dc.publisherJapanese Association for Acute Medicineen
dc.rights© 2022 The Authors. Acute Medicine & Surgery published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAsystoleen
dc.subjectcardiac arresten
dc.subjectclusteringen
dc.subjectlatent class analysisen
dc.subjectpulseless electrical activityen
dc.subjectsubphenotypeen
dc.titleClustering out-of-hospital cardiac arrest patients with non-shockable rhythm by machine learning latent class analysisen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAcute Medicine & Surgeryen
dc.identifier.volume9-
dc.identifier.issue1-
dc.relation.doi10.1002/ams2.760-
dc.textversionpublisher-
dc.identifier.artnume760-
dc.identifier.pmid35664809-
dcterms.accessRightsopen access-
datacite.awardNumber15H05006-
datacite.awardNumber19K09393-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15H05006/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K09393/-
dc.identifier.eissn2052-8817-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle院外心停止例の救命に寄与する要因の多面的分析と治療ストラテジの構築に関する研究ja
jpcoar.awardTitle心肺蘇生ガイドライン改定を見据えた院外心停止患者の高度集中治療と血液データの検証ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons