このアイテムのアクセス数: 133

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.eswa.2022.117130.pdf1.96 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTanimoto, Akiraen
dc.contributor.authorYamada, Soen
dc.contributor.authorTakenouchi, Takashien
dc.contributor.authorSugiyama, Masashien
dc.contributor.authorKashima, Hisashien
dc.contributor.alternative谷本, 啓ja
dc.contributor.alternative鹿島, 久嗣ja
dc.date.accessioned2023-02-13T09:37:42Z-
dc.date.available2023-02-13T09:37:42Z-
dc.date.issued2022-09-01-
dc.identifier.urihttp://hdl.handle.net/2433/279254-
dc.description.abstractThe class imbalance is a major issue in classification, i.e., the sample size of a rare class (positive) is often a performance bottleneck. In real-world situations, however, “near-miss” positive instances, i.e., negative but nearly-positive instances, are sometimes plentiful. For example, natural disasters such as floods are rare, while there are relatively plentiful near-miss cases where actual floods did not occur but the water level approached the bank height. We show that even when the true positive cases are quite limited, such as in disaster forecasting, the accuracy can be improved by obtaining refined label-like side-information “positivity” (e.g., the water level of the river) to distinguish near-miss cases from other negatives. Conventional cost-sensitive classification cannot utilize such side-information, and the small size of the positive sample causes high estimation variance. Our approach is in line with learning using privileged information (LUPI), which exploits side-information for training without predicting the side-information itself. We theoretically prove that our method reduces the estimation variance, provided that near-miss positive instances are plentiful, in exchange for additional bias. Results of extensive experiments demonstrate that our method tends to outperform or compares favorably to existing approaches.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Authors. Published by Elsevier Ltd.en
dc.rightsThis is an open access article under the CC BY license.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectImbalanced classificationen
dc.subjectLearning using privileged informationen
dc.subjectGeneralized distillationen
dc.titleImproving imbalanced classification using near-miss instancesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleExpert Systems with Applicationsen
dc.identifier.volume201-
dc.relation.doi10.1016/j.eswa.2022.117130-
dc.textversionpublisher-
dc.identifier.artnum117130-
dcterms.accessRightsopen access-
datacite.awardNumber20K03753-
datacite.awardNumber19H04071-
datacite.awardNumber20H04244-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K03753/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04071/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H04244/-
dc.identifier.pissn0957-4174-
dc.identifier.eissn1873-6793-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle非確率モデルを用いた統計的推定の枠組みの構築とヘテロな構造を持つデータへの応用ja
jpcoar.awardTitle高次元・大規模・多ドメインデータの特徴抽出と情報統合による統計的学習ja
jpcoar.awardTitle複雑な関係データに基づく意思決定のための機械学習研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons