このアイテムのアクセス数: 96
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
116.00000052.pdf | 2.63 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Wu, Yiming | en |
dc.contributor.author | Yoshii, Kazuyoshi | en |
dc.contributor.alternative | 呉, 益明 | ja |
dc.contributor.alternative | 吉井, 和佳 | ja |
dc.date.accessioned | 2023-02-15T09:11:59Z | - |
dc.date.available | 2023-02-15T09:11:59Z | - |
dc.date.issued | 2022-06-21 | - |
dc.identifier.uri | http://hdl.handle.net/2433/279280 | - |
dc.description.abstract | This paper describes a deep generative approach to joint chord and key estimation for music signals. The limited amount of music signals with complete annotations has been the major bottleneck in supervised multi-task learning of a classification model. To overcome this limitation, we integrate the supervised multi-task learning approach with the unsupervised autoencoding approach in a mutually complementary manner. Considering the typical process of music composition, we formulate a hierarchical latent variable model that sequentially generates keys, chords, and chroma vectors. The keys and chords are assumed to follow a language model that represents their relationships and dynamics. In the framework of amortized variational inference (AVI), we introduce a classification model that jointly infers discrete chord and key labels and a recognition model that infers continuous latent features. These models are combined to form a variational autoencoder (VAE) and are trained jointly in a (semi-)supervised manner, where the generative and language models act as regularizers for the classification model. We comprehensively investigate three different architectures for the chord and key classification model, and three different architectures for the language model. Experimental results demonstrate that the VAE-based multi-task learning improves chord estimation as well as key estimation. | en |
dc.language.iso | eng | - |
dc.publisher | Now Publishers | en |
dc.rights | © 2022 Y. Wu and K. Yoshii | en |
dc.rights | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence , which permits unrestricted re-use, distribution, and reproduction in any medium, for non-commercial use, provided the original work is properly cited. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | - |
dc.subject | Automatic chord estimation | en |
dc.subject | automatic key estimation | en |
dc.subject | variational autoencoder | en |
dc.subject | multi-task learning | en |
dc.title | Joint Chord and Key Estimation Based on a Hierarchical Variational Autoencoder with Multi-task Learning | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | APSIPA Transactions on Signal and Information Processing | en |
dc.identifier.volume | 11 | - |
dc.identifier.issue | 1 | - |
dc.relation.doi | 10.1561/116.00000052 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | e19 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 16H01744 | - |
datacite.awardNumber | 19H04137 | - |
datacite.awardNumber | 19K20340 | - |
datacite.awardNumber | 20K21813 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H01744/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04137/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20340/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K21813/ | - |
dc.identifier.eissn | 2048-7703 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 統計的文法理論と構成的意味論に基づく音楽理解の計算モデル | ja |
jpcoar.awardTitle | 認識・生成過程の統合に基づく視聴覚音楽理解 | ja |
jpcoar.awardTitle | 統計学習と進化理論に基づく音楽創作の学習・進化の研究 | ja |
jpcoar.awardTitle | あらゆる音の定位・分離・分類のためのユニバーサル音響理解モデル | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス