このアイテムのアクセス数: 67
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2228-14.pdf | 11.83 MB | Adobe PDF | 見る/開く |
タイトル: | On the pigeonhole and the modular counting principles over the bounded arithmetic $V^{0}$ (Theory and Applications of Proof and Computation) |
著者: | Ken, Eitetsu |
著者名の別形: | 権, 英哲 |
キーワード: | Proof complexity AC⁰-Frege system bounded arithmetic V⁰ Ajtai's theorem Nullstellensatz proof system pigeonhole principle modular counting principle uniform counting principle general counting principle oddtown theorem Fisher's inequality |
発行日: | Aug-2022 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2228 |
開始ページ: | 186 |
終了ページ: | 205 |
抄録: | The theorem of Ajtai ([1], improved by [11] and [12]), which shows a superpolynomial lower bound for AC⁰-Frege proofs of the pigeonhole principle, was a significant breakthrough of proof complexity and has been inspiring many other important works considering the strengths of modular counting principles and the pigeonhole principle. In terms of bounded arithmetics, the theorem implies that the pigeonhole principle is independent from the bounded arithmetic V⁰. Along the stream of researches, [7] gave the following conjectures and showed some sufficient conditions to prove them: ・V⁰ + UCP[l, d k] ∀ PHP[n+1 n].・For any prime number p other than 2, V⁰ + oddtownk ∀ Count[p n].・For any integer p ≥ 2, V⁰ + FIEk ∀ Count[p n]. Here, injPHP[n+1 n] is a formalization of the pigeonhole principle for injections, UCP[l, d k] is the uniform counting principle defined in [7], Count[p n] is the modular counting principle mod p, oddtownk is a formalization of odd town theorem, and FIEk is a formalization of Fisher's inequality. In this article, we give a summary of the work of [7], supplement both technical parts and motivations of it, and propose the future perspective. |
URI: | http://hdl.handle.net/2433/279734 |
出現コレクション: | 2228 証明と計算の理論と応用 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。