このアイテムのアクセス数: 67

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2228-14.pdf11.83 MBAdobe PDF見る/開く
タイトル: On the pigeonhole and the modular counting principles over the bounded arithmetic $V^{0}$ (Theory and Applications of Proof and Computation)
著者: Ken, Eitetsu
著者名の別形: 権, 英哲
キーワード: Proof complexity
AC⁰-Frege system
bounded arithmetic
V⁰
Ajtai's theorem
Nullstellensatz proof system
pigeonhole principle
modular counting principle
uniform counting principle
general counting principle
oddtown theorem
Fisher's inequality
発行日: Aug-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2228
開始ページ: 186
終了ページ: 205
抄録: The theorem of Ajtai ([1], improved by [11] and [12]), which shows a superpolynomial lower bound for AC⁰-Frege proofs of the pigeonhole principle, was a significant breakthrough of proof complexity and has been inspiring many other important works considering the strengths of modular counting principles and the pigeonhole principle. In terms of bounded arithmetics, the theorem implies that the pigeonhole principle is independent from the bounded arithmetic V⁰. Along the stream of researches, [7] gave the following conjectures and showed some sufficient conditions to prove them: ・V⁰ + UCP[l, d k] ∀ PHP[n+1 n].・For any prime number p other than 2, V⁰ + oddtownk ∀ Count[p n].・For any integer p ≥ 2, V⁰ + FIEk ∀ Count[p n]. Here, injPHP[n+1 n] is a formalization of the pigeonhole principle for injections, UCP[l, d k] is the uniform counting principle defined in [7], Count[p n] is the modular counting principle mod p, oddtownk is a formalization of odd town theorem, and FIEk is a formalization of Fisher's inequality. In this article, we give a summary of the work of [7], supplement both technical parts and motivations of it, and propose the future perspective.
URI: http://hdl.handle.net/2433/279734
出現コレクション:2228 証明と計算の理論と応用

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。