ダウンロード数: 29

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2231-17.pdf6.17 MBAdobe PDF見る/開く
タイトル: TORSION IN THE SPACE OF COMMUTING ELEMENTS IN A LIE GROUP (New trends of transformation groups)
著者: TAKEDA, MASAHIRO
著者名の別形: 武田, 雅広
発行日: Nov-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2231
開始ページ: 135
終了ページ: 142
抄録: Let G be a compact connected Lie group, and let Hom (ℤ[m],G) denote the space of homomorphisms from a free abelian group ℤ[m] to G. We study the problem of which primes p Hom (ℤ[m],G) has p-torsion in homology. We give a new homotopy decomposition of the space, and we prove that Hom(ℤ[m], SU(n)) for m ≥ 2 hasp-torsion in homology if and only if p ≤ n. In this text we overview the proof and observe some examples.
URI: http://hdl.handle.net/2433/279791
出現コレクション:2231 変換群論の新潮流

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。