ダウンロード数: 22
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
mfeku_37_4_299.pdf | 1.08 MB | Adobe PDF | 見る/開く |
タイトル: | Solvability of Linear Electrical Networks |
著者: | OZAWA, Takao |
発行日: | 31-Dec-1975 |
出版者: | Faculty of Engineering, Kyoto University |
誌名: | Memoirs of the Faculty of Engineering, Kyoto University |
巻: | 37 |
号: | 4 |
開始ページ: | 299 |
終了ページ: | 315 |
抄録: | The problem of the solvability of a linear active network is discussed on the basis of the two-graph method. It is shown that the topological condition for the solvability is the existence of a common tree of the voltage and current graphs derived from the network. Several conditions for the existence of a common tree are given as well as an algorithm to check whether a common tree exists or not. The algorithm also gives a common tree, if one exists. Then a structure of two-graphs is defined and algorithms to determine the structure are given. The uniqueness and the stability of the structure are discussed. A decomposition of the coefficient matrix of the network equations is derived from the structure. Finally, a classification of the network solvability is given. |
URI: | http://hdl.handle.net/2433/280991 |
出現コレクション: | Vol.37 Part 4 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。