ダウンロード数: 136

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_39_3_345.pdf406.45 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTOKUOKA, Tatsuoen
dc.date.accessioned2023-03-28T09:07:04Z-
dc.date.available2023-03-28T09:07:04Z-
dc.date.issued1977-09-21-
dc.identifier.urihttp://hdl.handle.net/2433/281040-
dc.description.abstractThe basic concepts of the continuum mechanics in a space of any dimension are presented. The deformation measures are defined, and the three fundamental laws and the constitutive equations are defined according to an analogy of continuum mechanics in a three-dimensional space. For the isotropic elastic material in n - dimensional space, the stress is represented by a polynomial of degree (n - 1) of the left Cauchy-Green tensor, and its coefficients are scalar functions of the n invariants of the tensor. For the Stokes fluid, the stress is represented by a polynomial of degree (n - 1) of the stretching, and its coefficients are scalar functions of the n invariants and the mass density. For the continuum in a one-dimensional space, all of the quantities reduce to scalars. Then the identity relations demanded by the principle of frame-indifference become trivial relations, the difference between the isotropy and the anisotropy disappears, and the distinction between the fluid and the non-fluid material also disappears. If the material is incompressible, it reduces to a rigid material and the stress becomes completely undeterminate.en
dc.language.isoeng-
dc.publisherFaculty of Engineering, Kyoto Universityen
dc.publisher.alternative京都大学工学部ja
dc.subject.ndc500-
dc.titleContinuum Mechanics in a Space of Any Dimension : I. Fundamental Laws and Constitutive Equationsen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA00732503-
dc.identifier.jtitleMemoirs of the Faculty of Engineering, Kyoto Universityen
dc.identifier.volume39-
dc.identifier.issue3-
dc.identifier.spage345-
dc.identifier.epage353-
dc.textversionpublisher-
dc.sortkey05-
dc.addressDepartment of Aeronautical Engineeringen
dcterms.accessRightsopen access-
dc.identifier.pissn0023-6063-
出現コレクション:Vol.39 Part 3

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。