Downloads: 66

Files in This Item:
File Description SizeFormat 
mfeku_40_1_30.pdf604.51 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMINE, Hisashien
dc.contributor.authorFUKUSHIMA, Masaoen
dc.date.accessioned2023-03-28T09:07:08Z-
dc.date.available2023-03-28T09:07:08Z-
dc.date.issued1978-01-
dc.identifier.urihttp://hdl.handle.net/2433/281064-
dc.description.abstractThis paper studies a new class of sequential unconstrained optimization methods, called the conjugate penalty method, for solving convex programming problems. The validity of the method is based on Fenchel's duality theorem. It is shown that, under certain condi- tions, conjugate penalty founctins are uniformly bounded on a neighborhood of a point which is an optimum of Fenchel's dual problem.en
dc.language.isoeng-
dc.publisherFaculty of Engineering, Kyoto Universityen
dc.publisher.alternative京都大学工学部ja
dc.subject.ndc500-
dc.titleApplication of Fenchel's Duality Theorem to Penalty Methods in Convex Programmingen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA00732503-
dc.identifier.jtitleMemoirs of the Faculty of Engineering, Kyoto Universityen
dc.identifier.volume40-
dc.identifier.issue1-
dc.identifier.spage30-
dc.identifier.epage40-
dc.textversionpublisher-
dc.sortkey05-
dc.addressDepartment of Applied Mathematics and Physicsen
dc.addressDepartment of Applied Mathematics and Physicsen
dcterms.accessRightsopen access-
dc.identifier.pissn0023-6063-
Appears in Collections:Vol.40 Part 1

Show simple item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.