このアイテムのアクセス数: 126

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41467-023-37540-7.pdf4.62 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKawasaki, Shunsukeen
dc.contributor.authorOno, Hirokien
dc.contributor.authorHirosawa, Moeen
dc.contributor.authorKuwabara, Takeruen
dc.contributor.authorSumi, Shunsukeen
dc.contributor.authorLee, Sujien
dc.contributor.authorWoltjen, Knuten
dc.contributor.authorSaito, Hirohideen
dc.contributor.alternative川﨑, 俊輔ja
dc.contributor.alternative小野, 紘貴ja
dc.contributor.alternative弘澤, 萌ja
dc.contributor.alternative桑原, 傑ja
dc.contributor.alternative角, 俊輔ja
dc.contributor.alternative齊藤, 博英ja
dc.date.accessioned2023-04-24T07:31:59Z-
dc.date.available2023-04-24T07:31:59Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2433/281770-
dc.descriptionmRNAスイッチを用いた哺乳類細胞内コンピューティングの基盤構築. 京都大学プレスリリース. 2023-04-20.ja
dc.descriptionEstablishing the basis for mammalian intracellular computing with mRNA switches. 京都大学プレスリリース. 2023-04-21.en
dc.description.abstractTranslational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5’-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2023en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectGenetic engineeringen
dc.subjectMolecular engineeringen
dc.subjectSynthetic biologyen
dc.titleProgrammable mammalian translational modulators by CRISPR-associated proteinsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature Communicationsen
dc.identifier.volume14-
dc.relation.doi10.1038/s41467-023-37540-7-
dc.textversionpublisher-
dc.identifier.artnum2243-
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University; Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto Universityen
dc.addressFaculty of Medicine, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University; Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University; Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto Universityen
dc.addressDepartment of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University; Graduate School of Medicine, Kyoto Universityen
dc.identifier.pmid37076490-
dc.relation.urlhttps://www.cira.kyoto-u.ac.jp/j/pressrelease/news/230420-130000.html-
dc.relation.urlhttps://www.cira.kyoto-u.ac.jp/e/pressrelease/news/230421-160000.html-
dcterms.accessRightsopen access-
datacite.awardNumber19K16110-
datacite.awardNumber19J21199-
datacite.awardNumber20K15777-
datacite.awardNumber15H05722-
datacite.awardNumber20H05626-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K16110/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J21199/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K15777/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15H05722/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H05626/-
dc.identifier.eissn2041-1723-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle翻訳制御を基盤とした大規模な哺乳類細胞コンピューティングの実現ja
jpcoar.awardTitleRNAテクノロジーを基盤としたヒト造血幹細胞選別技術の開発ja
jpcoar.awardTitle抗CRISPRタンパク質を用いた新規ゲノム編集法の開発ja
jpcoar.awardTitle人工RNPナノシステムを活用した細胞プログラミング技術の創出ja
jpcoar.awardTitleRNAを基盤とする合成生命システムの創成ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons