このアイテムのアクセス数: 314

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acs.jcim.1c01074.pdf1.96 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIshida, Shoichien
dc.contributor.authorTerayama, Keien
dc.contributor.authorKojima, Ryosukeen
dc.contributor.authorTakasu, Kiyoseien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative石田, 祥一ja
dc.contributor.alternative寺山, 慧ja
dc.contributor.alternative小島, 諒介ja
dc.contributor.alternative高須, 清誠ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2023-04-25T03:24:44Z-
dc.date.available2023-04-25T03:24:44Z-
dc.date.issued2022-03-28-
dc.identifier.urihttp://hdl.handle.net/2433/281792-
dc.description.abstractComputer-aided synthesis planning (CASP) aims to assist chemists in performing retrosynthetic analysis for which they utilize their experiments, intuition, and knowledge. Recent breakthroughs in machine learning (ML) techniques, including deep neural networks, have significantly improved data-driven synthetic route designs without human intervention. However, learning chemical knowledge by ML for practical synthesis planning has not yet been adequately achieved and remains a challenging problem. In this study, we developed a data-driven CASP application integrated with various portions of retrosynthesis knowledge called “ReTReK” that introduces the knowledge as adjustable parameters into the evaluation of promising search directions. The experimental results showed that ReTReK successfully searched synthetic routes based on the specified retrosynthesis knowledge, indicating that the synthetic routes searched with the knowledge were preferred to those without the knowledge. The concept of integrating retrosynthesis knowledge as adjustable parameters into a data-driven CASP application is expected to enhance the performance of both existing data-driven CASP applications and those under development.en
dc.language.isoeng-
dc.publisherAmerican Chemical Society (ACS)en
dc.rightsCopyright © 2022 The Authors. Published by American Chemical Societyen
dc.rightsThis is an open access article published under a Creative Commons Non-Commercial NoDerivative Works (CC-BY-NC-ND) Attribution License.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.titleAI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledgeen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Chemical Information and Modelingen
dc.identifier.volume62-
dc.identifier.issue6-
dc.identifier.spage1357-
dc.identifier.epage1367-
dc.relation.doi10.1021/acs.jcim.1c01074-
dc.textversionpublisher-
dc.identifier.pmid35258953-
dcterms.accessRightsopen access-
dc.identifier.pissn1549-9596-
dc.identifier.eissn1549-960X-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons