このアイテムのアクセス数: 99

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
d2ey00109h.pdf1.16 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKotani, Tetsuen
dc.contributor.authorOgawa, Kantaen
dc.contributor.authorSuzuki, Hajimeen
dc.contributor.authorKato, Kosakuen
dc.contributor.authorTomita, Osamuen
dc.contributor.authorYamakata, Akiraen
dc.contributor.authorAbe, Ryuen
dc.contributor.alternative小谷, 哲ja
dc.contributor.alternative小川, 幹太ja
dc.contributor.alternative鈴木, 肇ja
dc.contributor.alternative冨田, 修ja
dc.contributor.alternative阿部, 竜ja
dc.date.accessioned2023-05-17T05:49:12Z-
dc.date.available2023-05-17T05:49:12Z-
dc.date.issued2023-05-01-
dc.identifier.urihttp://hdl.handle.net/2433/282133-
dc.description.abstractA core–shell structured Rh/CrOx cocatalyst has endowed various semiconductors with high efficiency in water-splitting photocatalysis, where thin CrOx layers on Rh have been assumed to be physical blockers of O₂ to the metal surface to suppress unfavorable reverse reactions (e.g., catalytic H₂O formation from H₂ and O₂). Herein, we propose another unexplored but favorable function of CrOx layers: a selective electron transport pathway from photocatalysts to the Rh core boosting charge separation and H₂ production. The subsequent loading of CrOx layers onto Rh increased the rate of visible light H₂ evolution of a Bi₄NbO₈Cl photocatalyst, even in a half reaction with a hole scavenger where O₂ does not evolve. Transient absorption spectroscopy revealed that the CrOx layer increases the electron path from Bi₄NbO₈Cl to Rh. Importantly, the highest H₂-evolution activity was obtained by simultaneous photodeposition using CrIII and RhIII precursors, which had not yet been examined. In this sample, Rh nanoparticles were enclosed by an amorphous CrOx shell, where Rh particles were less directly attached to the semiconductor. Therein, CrOx inserted between Bi₄NbO₈Cl and Rh effectively suppresses undesirable hole transfer from Bi₄NbO₈Cl to Rh, while such hole transfer partially occurs when they are in direct contact. These results indicated that CrOx functions as a selective electron transport pathway and improves the H₂ evolution activity. Although the development strategy of cocatalysts has so far focused on surface redox reactions, this study offers a new approach for the design of highly efficient cocatalysts based on the carrier transfer process, especially at semiconductor–cocatalyst interfaces.en
dc.language.isoeng-
dc.publisherRoyal Society of Chemistry (RSC)en
dc.rights© 2023 The Author(s). Published by the Royal Society of Chemistryen
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/-
dc.titleAn unexplored role of the CrOx shell in an elaborated Rh/CrOx core–shell cocatalyst for photocatalytic water splitting: a selective electron transport pathway from semiconductors to core metals, boosting charge separation and H₂ evolutionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEES Catalysisen
dc.identifier.volume1-
dc.identifier.issue3-
dc.identifier.spage255-
dc.identifier.epage262-
dc.relation.doi10.1039/d2ey00109h-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber20H00398-
datacite.awardNumber17H06439-
datacite.awardNumber19J23357-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00398/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-17H06439/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J23357/-
dc.identifier.eissn2753-801X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle高速探索メソッドに基づく高効率水分解光触媒の開発ja
jpcoar.awardTitle分子・半導体光触媒による高効率可視光水分解系の開発ja
jpcoar.awardTitle高効率可視光水分解を目指した酸ハロゲン化物光触媒のバルク及び表面特性制御法の開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons