このアイテムのアクセス数: 117
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s43856-023-00299-5.pdf | 1.09 MB | Adobe PDF | 見る/開く |
タイトル: | A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation |
著者: | Jo, Tomoyasu Arai, Yasuyuki ![]() ![]() ![]() Kanda, Junya ![]() ![]() ![]() Kondo, Tadakazu Ikegame, Kazuhiro Uchida, Naoyuki Doki, Noriko Fukuda, Takahiro Ozawa, Yukiyasu Tanaka, Masatsugu Ara, Takahide Kuriyama, Takuro Katayama, Yuta Kawakita, Toshiro Kanda, Yoshinobu Onizuka, Makoto Ichinohe, Tatsuo Atsuta, Yoshiko Terakura, Seitaro |
著者名の別形: | 城, 友泰 新井, 康之 諫田, 淳也 近藤, 忠一 池亀, 和博 内田, 直之 土岐, 典子 福田, 隆浩 小澤, 幸泰 田中, 正嗣 荒, 隆英 栗山, 拓郎 片山, 雄太 河北, 敏郎 神田, 善伸 鬼塚, 真仁 一戸, 辰夫 熱田, 由子 寺倉, 精太郎 |
キーワード: | Computational biology and bioinformatics Graft-versus-host disease Haematological diseases Haematopoietic stem cells |
発行日: | 16-May-2023 |
出版者: | Springer Nature |
誌名: | Communications Medicine |
巻: | 3 |
論文番号: | 67 |
抄録: | [Background] Forecasting acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) is highly challenging with conventional statistical techniques due to complex parameters and their interactions. The primary object of this study was to establish a convolutional neural network (CNN)-based prediction model for aGVHD. [Method] We analyzed adult patients who underwent allogeneic HSCT between 2008 and 2018, using the Japanese nationwide registry database. The CNN algorithm, equipped with a natural language processing technique and an interpretable explanation algorithm, was applied to develop and validate prediction models. [Results] Here, we evaluate 18, 763 patients between 16 and 80 years of age (median, 50 years). In total, grade II–IV and grade III–IV aGVHD is observed among 42.0% and 15.6%. The CNN-based model eventually allows us to calculate a prediction score of aGVHD for an individual case, which is validated to distinguish the high-risk group of aGVHD in the test cohort: cumulative incidence of grade III–IV aGVHD at Day 100 after HSCT is 28.8% for patients assigned to a high-risk group by the CNN model, compared to 8.4% among low-risk patients (hazard ratio, 4.02; 95% confidence interval, 2.70–5.97; p < 0.01), suggesting high generalizability. Furthermore, our CNN-based model succeeds in visualizing the learning process. Moreover, contributions of pre-transplant parameters other than HLA information to the risk of aGVHD are determined. [Conclusions] Our results suggest that CNN-based prediction provides a faithful prediction model for aGVHD, and can serve as a valuable tool for decision-making in clinical practice. |
記述: | 人工知能を用いた造血幹細胞移植後の合併症発症予測 --畳み込みニューラルネットワークによる移植片対宿主病発症予測--. 京都大学プレスリリース. 2023-05-24. |
著作権等: | © The Author(s) 2023 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
URI: | http://hdl.handle.net/2433/282850 |
DOI(出版社版): | 10.1038/s43856-023-00299-5 |
PubMed ID: | 37193882 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2023-05-24-0 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス