このアイテムのアクセス数: 141
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s10015-022-00832-0.pdf | 1.51 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ode, Rikumo | en |
dc.contributor.author | Fujiwara, Koichi | en |
dc.contributor.author | Miyajima, Miho | en |
dc.contributor.author | Yamakawa, Toshikata | en |
dc.contributor.author | Kano, Manabu | en |
dc.contributor.author | Jin, Kazutaka | en |
dc.contributor.author | Nakasato, Nobukazu | en |
dc.contributor.author | Sawai, Yasuko | en |
dc.contributor.author | Hoshida, Toru | en |
dc.contributor.author | Iwasaki, Masaki | en |
dc.contributor.author | Murata, Yoshiko | en |
dc.contributor.author | Watanabe, Satsuki | en |
dc.contributor.author | Watanabe, Yutaka | en |
dc.contributor.author | Suzuki, Yoko | en |
dc.contributor.author | Inaji, Motoki | en |
dc.contributor.author | Kunii, Naoto | en |
dc.contributor.author | Oshino, Satoru | en |
dc.contributor.author | Khoo, Ming, Hui | en |
dc.contributor.author | Kishima, Haruhiko | en |
dc.contributor.author | Maehara, Taketoshi | en |
dc.contributor.alternative | 藤原, 幸一 | ja |
dc.contributor.alternative | 加納, 学 | ja |
dc.date.accessioned | 2023-06-01T05:12:42Z | - |
dc.date.available | 2023-06-01T05:12:42Z | - |
dc.date.issued | 2023-05 | - |
dc.identifier.uri | http://hdl.handle.net/2433/283092 | - |
dc.description.abstract | Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2022 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Epilepsy | en |
dc.subject | Electrocardiogram | en |
dc.subject | Machine learning | en |
dc.subject | Self-attentive autoencoder | en |
dc.title | Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Artificial Life and Robotics | en |
dc.identifier.volume | 28 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 403 | - |
dc.identifier.epage | 409 | - |
dc.relation.doi | 10.1007/s10015-022-00832-0 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1433-5298 | - |
dc.identifier.eissn | 1614-7456 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス