このアイテムのアクセス数: 141

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s10015-022-00832-0.pdf1.51 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOde, Rikumoen
dc.contributor.authorFujiwara, Koichien
dc.contributor.authorMiyajima, Mihoen
dc.contributor.authorYamakawa, Toshikataen
dc.contributor.authorKano, Manabuen
dc.contributor.authorJin, Kazutakaen
dc.contributor.authorNakasato, Nobukazuen
dc.contributor.authorSawai, Yasukoen
dc.contributor.authorHoshida, Toruen
dc.contributor.authorIwasaki, Masakien
dc.contributor.authorMurata, Yoshikoen
dc.contributor.authorWatanabe, Satsukien
dc.contributor.authorWatanabe, Yutakaen
dc.contributor.authorSuzuki, Yokoen
dc.contributor.authorInaji, Motokien
dc.contributor.authorKunii, Naotoen
dc.contributor.authorOshino, Satoruen
dc.contributor.authorKhoo, Ming, Huien
dc.contributor.authorKishima, Haruhikoen
dc.contributor.authorMaehara, Taketoshien
dc.contributor.alternative藤原, 幸一ja
dc.contributor.alternative加納, 学ja
dc.date.accessioned2023-06-01T05:12:42Z-
dc.date.available2023-06-01T05:12:42Z-
dc.date.issued2023-05-
dc.identifier.urihttp://hdl.handle.net/2433/283092-
dc.description.abstractEpilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2022en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectEpilepsyen
dc.subjectElectrocardiogramen
dc.subjectMachine learningen
dc.subjectSelf-attentive autoencoderen
dc.titleDevelopment of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoderen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleArtificial Life and Roboticsen
dc.identifier.volume28-
dc.identifier.issue2-
dc.identifier.spage403-
dc.identifier.epage409-
dc.relation.doi10.1007/s10015-022-00832-0-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.pissn1433-5298-
dc.identifier.eissn1614-7456-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons