Downloads: 67

Files in This Item:
File Description SizeFormat 
dnikk00113.pdfDissertation_全文5.61 MBAdobe PDFView/Open
ynikk00113.pdfAbstract_要旨160.29 kBAdobe PDFView/Open
Title: Development of a deep learning-based patient-specific target contour prediction model for markerless tumor positioning
Other Titles: マーカーレス腫瘍位置決めを目的とした深層学習に基づく患者固有標的輪郭予測モデルの開発
Authors: Zhou, Dejun
Author's alias: 周, 徳軍
Keywords: markerless tumor positioning
deep learning
real-time tumor tracking
patient-specific
tumor contour prediction model
Issue Date: 23-Mar-2023
Publisher: Kyoto University
Conferring University: 京都大学
Degree Level: 新制・課程博士
Degree Discipline: 博士(人間健康科学)
Degree Report no.: 甲第24542号
Degree no.: 人健博第113号
Conferral date: 2023-03-23
Degree Call no.: 新制||人健||8(附属図書館)
Degree Affiliation: 京都大学大学院医学研究科人間健康科学系専攻
Examination Committee members: (主査)教授 中尾 恵, 教授 杉本 直三, 教授 黒田 知宏
Provisions of the Ruling of Degree: 学位規則第4条第1項該当
DOI: 10.14989/doctor.k24542
URI: http://hdl.handle.net/2433/283661
dc.relation.haspart: https://doi.org/10.1002/mp.15456
Appears in Collections:060_4 Doctoral Dissertation (Human Health Science)

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.