このアイテムのアクセス数: 286

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ICBIR57571.2023.10147628.pdf827.76 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYasuoka, Koichien
dc.contributor.alternative安岡, 孝一ja
dc.date.accessioned2023-07-06T02:56:14Z-
dc.date.available2023-07-06T02:56:14Z-
dc.date.issued2023-05-
dc.identifier.isbn9798350399646-
dc.identifier.urihttp://hdl.handle.net/2433/284021-
dc.description2023 8th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand. 18-19 May 2023en
dc.description.abstractThe author and his colleagues have been developing classical Chinese treebank using Universal Dependencies. We also developed RoBERTa-Classical-Chinese model pre-trained with classical Chinese texts of 1.7 billion characters. In this paper we describe how to finetune sequence-labeling RoBERTa model for dependency-parsing in classical Chinese. We introduce “goeswith”-labeled edges into the directed acyclic graphs of Universal Dependencies in order to resolve the mismatch between the token length of RoBERTa-Classical-Chinese and the word length in classical Chinese. We utilize [MASK]token of RoBERTa model to handle outgoing edges and to produce the adjacency-matrices for the graphs of Universal Dependencies. Our RoBERTa-UDgoeswith model outperforms other dependency-parsers in classical Chinese on LAS/MLAS/BLEX benchmark scores. Then we apply our methods to other isolating languages. For Vietnamese we introduce “goeswith”-labeled edges to separate words into space-separated syllables, and finetune RoBERTa and PhoBERT models. For Thai we try three kinds of tokenizers, character-wise tokenizer, quasi-syllable tokenizer, and SentencePiece, to produce RoBERTa models.en
dc.language.isoeng-
dc.publisherIEEEen
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectdependency-parsingen
dc.subjectpart-of-speech taggingen
dc.subjectsequence-labelingen
dc.subjectUniversal Dependenciesen
dc.subjectpre-trained language modelen
dc.titleSequence-Labeling RoBERTa Model for Dependency-Parsing in Classical Chinese and Its Application to Vietnamese and Thaien
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitle2023 8th International Conference on Business and Industrial Research (ICBIR)en
dc.identifier.spage169-
dc.identifier.epage173-
dc.relation.doi10.1109/ICBIR57571.2023.10147628-
dc.textversionauthor-
dc.addressInstitute for Research in Humanities, Kyoto Universityen
dc.relation.urlhttps://icbir.tni.ac.th/-
dcterms.accessRightsopen access-
jpcoar.conferenceNameInternational Conference on Business and Industrial Research (ICBIR)en
jpcoar.conferenceSequence8-
jpcoar.conferenceSponsorThai-Nichi Institute of Technology (TNI) , Technology Promotion Association (Thailand-Japan) (TPA) and Artificial Intelligence Association of Thailand (AIAT)en
jpcoar.conferenceDateMay 18-19, 2023en
jpcoar.conferenceStartDate2023-05-18-
jpcoar.conferenceEndDate2023-05-19-
jpcoar.conferenceVenueE Building, Thai-Nichi Institute of Technologyen
jpcoar.conferencePlaceBangkoken
jpcoar.conferenceCountryTHA-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。