このアイテムのアクセス数: 161
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2041-210x.13972.pdf | 1.63 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Yabuki, Arata | en |
dc.contributor.author | Ikeno, Hidetoshi | en |
dc.contributor.author | Dannoura, Masako | en |
dc.contributor.alternative | 矢吹, 新 | ja |
dc.contributor.alternative | 檀浦, 正子 | ja |
dc.date.accessioned | 2023-07-25T00:29:00Z | - |
dc.date.available | 2023-07-25T00:29:00Z | - |
dc.date.issued | 2022-11 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284446 | - |
dc.description.abstract | 1. Buried scanners are often used to study fine root dynamics by continuously observing them from the images taken at a fixed point. Accordingly, software have been developed to support operators to quantitatively analyse fine roots from scanned images. However, image processing is still time-consuming work. 2. Deep learning has achieved impressive results as a method for recognising objects in pixel units. In this study, we attempted to automate the image analysis of fine roots using convolutional neural network. 3. Using a root auto tracing and analysis (ARATA), we succeeded in extracting fine roots from scanned images and calculated projected area of fine roots for long-term dynamics. 4. Our software enables the automatic processing of scanned images acquired at various study sites and accelerates the study of fine root dynamics over extended time periods. | en |
dc.language.iso | eng | - |
dc.publisher | Wiley | en |
dc.publisher | British Ecological Society | en |
dc.rights | © 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. | en |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | convolutional neural network | en |
dc.subject | deep learning | en |
dc.subject | fine root dynamics | en |
dc.subject | image processing | en |
dc.subject | image scanner | en |
dc.title | A root auto tracing and analysis (ARATA): An automatic analysis software for detecting fine roots in images from flatbed optical scanners | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Methods in Ecology and Evolution | en |
dc.identifier.volume | 13 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 2372 | - |
dc.identifier.epage | 2378 | - |
dc.relation.doi | 10.1111/2041-210x.13972 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 16H05791 | - |
datacite.awardNumber | 20H03030 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H05791/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H03030/ | - |
dc.identifier.eissn | 2041-210X | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | アマゾン熱帯林における低インパクト型択伐施業の可能性:樹種の成長特性に基づく検証 | ja |
jpcoar.awardTitle | 休みこそが駆動力?シンクとソースの日周期を考慮した樹木師部輸送モデルの実測 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス