このアイテムのアクセス数: 161

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2041-210x.13972.pdf1.63 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYabuki, Arataen
dc.contributor.authorIkeno, Hidetoshien
dc.contributor.authorDannoura, Masakoen
dc.contributor.alternative矢吹, 新ja
dc.contributor.alternative檀浦, 正子ja
dc.date.accessioned2023-07-25T00:29:00Z-
dc.date.available2023-07-25T00:29:00Z-
dc.date.issued2022-11-
dc.identifier.urihttp://hdl.handle.net/2433/284446-
dc.description.abstract1. Buried scanners are often used to study fine root dynamics by continuously observing them from the images taken at a fixed point. Accordingly, software have been developed to support operators to quantitatively analyse fine roots from scanned images. However, image processing is still time-consuming work. 2. Deep learning has achieved impressive results as a method for recognising objects in pixel units. In this study, we attempted to automate the image analysis of fine roots using convolutional neural network. 3. Using a root auto tracing and analysis (ARATA), we succeeded in extracting fine roots from scanned images and calculated projected area of fine roots for long-term dynamics. 4. Our software enables the automatic processing of scanned images acquired at various study sites and accelerates the study of fine root dynamics over extended time periods.en
dc.language.isoeng-
dc.publisherWileyen
dc.publisherBritish Ecological Societyen
dc.rights© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectconvolutional neural networken
dc.subjectdeep learningen
dc.subjectfine root dynamicsen
dc.subjectimage processingen
dc.subjectimage scanneren
dc.titleA root auto tracing and analysis (ARATA): An automatic analysis software for detecting fine roots in images from flatbed optical scannersen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleMethods in Ecology and Evolutionen
dc.identifier.volume13-
dc.identifier.issue11-
dc.identifier.spage2372-
dc.identifier.epage2378-
dc.relation.doi10.1111/2041-210x.13972-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber16H05791-
datacite.awardNumber20H03030-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H05791/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H03030/-
dc.identifier.eissn2041-210X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleアマゾン熱帯林における低インパクト型択伐施業の可能性:樹種の成長特性に基づく検証ja
jpcoar.awardTitle休みこそが駆動力?シンクとソースの日周期を考慮した樹木師部輸送モデルの実測ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons