このアイテムのアクセス数: 41
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s00205-023-01881-w.pdf | 803 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Takasao, Keisuke | en |
dc.contributor.alternative | 髙棹, 圭介 | ja |
dc.date.accessioned | 2023-07-31T01:47:54Z | - |
dc.date.available | 2023-07-31T01:47:54Z | - |
dc.date.issued | 2023-06 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284485 | - |
dc.description.abstract | In this paper, we construct a family of integral varifolds, which is a global weak solution to the volume preserving mean curvature flow in the sense of $$L^2$$-flow. This flow is also a distributional BV-solution for a short time, when the perimeter of the initial data is sufficiently close to that of a ball with the same volume. To construct the flow, we use the Allen–Cahn equation with a non-local term motivated by studies of Mugnai, Seis, and Spadaro, and Kim and Kwon. We prove the convergence of the solution for the Allen–Cahn equation to the family of integral varifolds with only natural assumptions for the initial data. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) (2023) | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.title | The Existence of a Weak Solution to Volume Preserving Mean Curvature Flow in Higher Dimensions | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Archive for Rational Mechanics and Analysis | en |
dc.identifier.volume | 247 | - |
dc.identifier.issue | 3 | - |
dc.relation.doi | 10.1007/s00205-023-01881-w | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 52 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 20K14343 | - |
datacite.awardNumber | 18H03670 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K14343/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H03670/ | - |
dc.identifier.pissn | 0003-9527 | - |
dc.identifier.eissn | 1432-0673 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 動的変分問題に対する新しいフェイズフィールド法の構成 | ja |
jpcoar.awardTitle | 幾何学的測度論を用いた動的変分問題の多面的研究 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス