このアイテムのアクセス数: 272
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
plantphenomics.0073.pdf | 20.21 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Tanaka, Yu | en |
dc.contributor.author | Watanabe, Tomoya | en |
dc.contributor.author | Katsura, Keisuke | en |
dc.contributor.author | Tsujimoto, Yasuhiro | en |
dc.contributor.author | Takai, Toshiyuki | en |
dc.contributor.author | Tanaka, Takashi Sonam Tashi | en |
dc.contributor.author | Kawamura, Kensuke | en |
dc.contributor.author | Saito, Hiroki | en |
dc.contributor.author | Homma, Koki | en |
dc.contributor.author | Mairoua, Salifou Goube | en |
dc.contributor.author | Ahouanton, Kokou | en |
dc.contributor.author | Ibrahim, Ali | en |
dc.contributor.author | Senthilkumar, Kalimuthu | en |
dc.contributor.author | Semwal, Vimal Kumar | en |
dc.contributor.author | Matute, Edurado Graterol | en |
dc.contributor.author | Corredor, Edgar | en |
dc.contributor.author | El-Namaky, Raafat | en |
dc.contributor.author | Manigbas, Norbie L. | en |
dc.contributor.author | Quilang, Edurado Jimmy P. | en |
dc.contributor.author | Iwahashi, Yu | en |
dc.contributor.author | Nakajima, Kota | en |
dc.contributor.author | Takeuchi, Eisuke | en |
dc.contributor.author | Saito, Kazuki | en |
dc.contributor.alternative | 田中, 佑 | ja |
dc.contributor.alternative | 渡邊, 智也 | ja |
dc.contributor.alternative | 桂, 圭佑 | ja |
dc.contributor.alternative | 辻本, 泰弘 | ja |
dc.contributor.alternative | 高井, 俊之 | ja |
dc.contributor.alternative | 田中, 貴 | ja |
dc.contributor.alternative | 川村, 健介 | ja |
dc.contributor.alternative | 齊藤, 大樹 | ja |
dc.contributor.alternative | 本間, 香貴 | ja |
dc.contributor.alternative | 岩橋, 優 | ja |
dc.contributor.alternative | 中嶌, 洸太 | ja |
dc.contributor.alternative | 竹内, 瑛祐 | ja |
dc.contributor.alternative | 齋藤, 和樹 | ja |
dc.date.accessioned | 2023-08-01T04:36:50Z | - |
dc.date.available | 2023-08-01T04:36:50Z | - |
dc.date.issued | 2023-07-28 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284495 | - |
dc.description | AIの目によるイネ収穫量の簡単・迅速推定. 京都大学プレスリリース. 2023-07-21. | en |
dc.description.abstract | Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22, 000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4, 820 harvesting plots having the yield of 0.1 to 16.1 t·ha⁻¹ across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30° from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting. | en |
dc.language.iso | eng | - |
dc.publisher | American Association for the Advancement of Science (AAAS) | en |
dc.rights | Copyright © 2023 Yu Tanaka et al. | en |
dc.rights | Exclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0). | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.title | Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Plant Phenomics | en |
dc.identifier.volume | 5 | - |
dc.relation.doi | 10.34133/plantphenomics.0073 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 0073 | - |
dc.address | Graduate School of Agriculture, Kyoto University; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University | en |
dc.address | Graduate School of Mathematics, Kyushu University | en |
dc.address | Graduate School of Agriculture, Tokyo University of Agriculture and Technology | en |
dc.address | Japan International Research Center for Agricultural Sciences | en |
dc.address | Japan International Research Center for Agricultural Sciences | en |
dc.address | Faculty of Applied Biological Sciences, Gifu University; Artificial Intelligence Advanced Research Center, Gifu University | en |
dc.address | Japan International Research Center for Agricultural Sciences | en |
dc.address | Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences | en |
dc.address | Graduate School of Agricultural Science, Tohoku University | en |
dc.address | Africa Rice Center (AfricaRice), 01 BP 2551 Bouaké | en |
dc.address | Africa Rice Center (AfricaRice), 01 BP 2551 Bouaké | en |
dc.address | Africa Rice Center (AfricaRice), Regional Station for the Sahel | en |
dc.address | Africa Rice Center (AfricaRice), P.O. Box 1690, Ampandrianomby | en |
dc.address | Africa Rice Center (AfricaRice), Nigeria Station | en |
dc.address | Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT | en |
dc.address | Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT | en |
dc.address | Rice Research and Training Center, Field Crops Research Institute | en |
dc.address | Philippine Rice Research Institute (PhilRice) | en |
dc.address | Philippine Rice Research Institute (PhilRice) | en |
dc.address | Graduate School of Agriculture, Kyoto University | en |
dc.address | Graduate School of Agriculture, Kyoto University | en |
dc.address | Graduate School of Agriculture, Kyoto University | en |
dc.address | Japan International Research Center for Agricultural Sciences; Africa Rice Center (AfricaRice), 01 BP 2551 Bouaké; International Rice Research Institute (IRRI) | en |
dc.identifier.pmid | 38239736 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2023-07-21 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19H02939 | - |
datacite.awardNumber | 20H02968 | - |
datacite.awardNumber | 21K19104 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02939/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H02968/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K19104/ | - |
dc.identifier.pissn | 2097-0374 | - |
dc.identifier.eissn | 2643-6515 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 葉のガス交換の直接計測によるイネ光合成QTLの同定手法の開発 | ja |
jpcoar.awardTitle | 深層学習に基づくイネバイオマスの汎用的推定モデル構築とその応用 | ja |
jpcoar.awardTitle | 時系列並列解析によるイネ光合成誘導の多様性および遺伝要因の解明 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス