このアイテムのアクセス数: 272

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
plantphenomics.0073.pdf20.21 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTanaka, Yuen
dc.contributor.authorWatanabe, Tomoyaen
dc.contributor.authorKatsura, Keisukeen
dc.contributor.authorTsujimoto, Yasuhiroen
dc.contributor.authorTakai, Toshiyukien
dc.contributor.authorTanaka, Takashi Sonam Tashien
dc.contributor.authorKawamura, Kensukeen
dc.contributor.authorSaito, Hirokien
dc.contributor.authorHomma, Kokien
dc.contributor.authorMairoua, Salifou Goubeen
dc.contributor.authorAhouanton, Kokouen
dc.contributor.authorIbrahim, Alien
dc.contributor.authorSenthilkumar, Kalimuthuen
dc.contributor.authorSemwal, Vimal Kumaren
dc.contributor.authorMatute, Edurado Graterolen
dc.contributor.authorCorredor, Edgaren
dc.contributor.authorEl-Namaky, Raafaten
dc.contributor.authorManigbas, Norbie L.en
dc.contributor.authorQuilang, Edurado Jimmy P.en
dc.contributor.authorIwahashi, Yuen
dc.contributor.authorNakajima, Kotaen
dc.contributor.authorTakeuchi, Eisukeen
dc.contributor.authorSaito, Kazukien
dc.contributor.alternative田中, 佑ja
dc.contributor.alternative渡邊, 智也ja
dc.contributor.alternative桂, 圭佑ja
dc.contributor.alternative辻本, 泰弘ja
dc.contributor.alternative高井, 俊之ja
dc.contributor.alternative田中, 貴ja
dc.contributor.alternative川村, 健介ja
dc.contributor.alternative齊藤, 大樹ja
dc.contributor.alternative本間, 香貴ja
dc.contributor.alternative岩橋, 優ja
dc.contributor.alternative中嶌, 洸太ja
dc.contributor.alternative竹内, 瑛祐ja
dc.contributor.alternative齋藤, 和樹ja
dc.date.accessioned2023-08-01T04:36:50Z-
dc.date.available2023-08-01T04:36:50Z-
dc.date.issued2023-07-28-
dc.identifier.urihttp://hdl.handle.net/2433/284495-
dc.descriptionAIの目によるイネ収穫量の簡単・迅速推定. 京都大学プレスリリース. 2023-07-21.en
dc.description.abstractRice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22, 000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4, 820 harvesting plots having the yield of 0.1 to 16.1 t·ha⁻¹ across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30° from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting.en
dc.language.isoeng-
dc.publisherAmerican Association for the Advancement of Science (AAAS)en
dc.rightsCopyright © 2023 Yu Tanaka et al.en
dc.rightsExclusive licensee Nanjing Agricultural University. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titleDeep learning enables instant and versatile estimation of rice yield using ground-based RGB imagesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitlePlant Phenomicsen
dc.identifier.volume5-
dc.relation.doi10.34133/plantphenomics.0073-
dc.textversionpublisher-
dc.identifier.artnum0073-
dc.addressGraduate School of Agriculture, Kyoto University; Graduate School of Environmental, Life, Natural Science and Technology, Okayama Universityen
dc.addressGraduate School of Mathematics, Kyushu Universityen
dc.addressGraduate School of Agriculture, Tokyo University of Agriculture and Technologyen
dc.addressJapan International Research Center for Agricultural Sciencesen
dc.addressJapan International Research Center for Agricultural Sciencesen
dc.addressFaculty of Applied Biological Sciences, Gifu University; Artificial Intelligence Advanced Research Center, Gifu Universityen
dc.addressJapan International Research Center for Agricultural Sciencesen
dc.addressTropical Agriculture Research Front, Japan International Research Center for Agricultural Sciencesen
dc.addressGraduate School of Agricultural Science, Tohoku Universityen
dc.addressAfrica Rice Center (AfricaRice), 01 BP 2551 Bouakéen
dc.addressAfrica Rice Center (AfricaRice), 01 BP 2551 Bouakéen
dc.addressAfrica Rice Center (AfricaRice), Regional Station for the Sahelen
dc.addressAfrica Rice Center (AfricaRice), P.O. Box 1690, Ampandrianombyen
dc.addressAfrica Rice Center (AfricaRice), Nigeria Stationen
dc.addressLatin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIATen
dc.addressLatin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIATen
dc.addressRice Research and Training Center, Field Crops Research Instituteen
dc.addressPhilippine Rice Research Institute (PhilRice)en
dc.addressPhilippine Rice Research Institute (PhilRice)en
dc.addressGraduate School of Agriculture, Kyoto Universityen
dc.addressGraduate School of Agriculture, Kyoto Universityen
dc.addressGraduate School of Agriculture, Kyoto Universityen
dc.addressJapan International Research Center for Agricultural Sciences; Africa Rice Center (AfricaRice), 01 BP 2551 Bouaké; International Rice Research Institute (IRRI)en
dc.identifier.pmid38239736-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2023-07-21-
dcterms.accessRightsopen access-
datacite.awardNumber19H02939-
datacite.awardNumber20H02968-
datacite.awardNumber21K19104-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02939/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H02968/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K19104/-
dc.identifier.pissn2097-0374-
dc.identifier.eissn2643-6515-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle葉のガス交換の直接計測によるイネ光合成QTLの同定手法の開発ja
jpcoar.awardTitle深層学習に基づくイネバイオマスの汎用的推定モデル構築とその応用ja
jpcoar.awardTitle時系列並列解析によるイネ光合成誘導の多様性および遺伝要因の解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons