このアイテムのアクセス数: 103
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
LCSYS.2022.3227452.pdf | 1.12 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kunwoo, Lee | en |
dc.contributor.author | Umezu, Yusuke | en |
dc.contributor.author | Konno, Kaiki | en |
dc.contributor.author | Kashima, Kenji | en |
dc.contributor.alternative | 加嶋, 健司 | ja |
dc.date.accessioned | 2023-08-10T09:35:14Z | - |
dc.date.available | 2023-08-10T09:35:14Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/2433/284654 | - |
dc.description.abstract | In this letter, we present a novel (empirical) observability Gramian for nonlinear stochastic systems in the light of Bayesian inference. First, we define our observability Gramian, which we refer to as the estimability Gramian, based on the relation to the so-called Bayesian Fisher Information Matrix for initial state estimation. Then, we study the fundamental properties of an empirical version of the estimability Gramian. The practical usefulness of the proposed framework is examined through its application to a parameter and initial state estimation in a natural gas engine cylinder. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Bayesian Fisher information | en |
dc.subject | Bayesian state estimation | en |
dc.subject | data-driven oveservability analysis | en |
dc.subject | nonlinear systems | en |
dc.subject | observability Gramian | en |
dc.title | Observability Gramian for Bayesian Inference in Nonlinear Systems With Its Industrial Application | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE Control Systems Letters | en |
dc.identifier.volume | 7 | - |
dc.identifier.spage | 871 | - |
dc.identifier.epage | 876 | - |
dc.relation.doi | 10.1109/LCSYS.2022.3227452 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 21H04875 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04875/ | - |
dc.identifier.eissn | 2475-1456 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 情報の取得を包含した制御理論と統計的学習理論の融合数理基盤 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス