このアイテムのアクセス数: 107

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s10489-023-04565-w.pdf1.19 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKupwiwat, Chi-tathonen
dc.contributor.authorHayashi, Kazukien
dc.contributor.authorOhsaki, Makotoen
dc.contributor.alternative林, 和希ja
dc.contributor.alternative大﨑, 純ja
dc.date.accessioned2023-09-19T02:43:01Z-
dc.date.available2023-09-19T02:43:01Z-
dc.date.issued2023-09-
dc.identifier.urihttp://hdl.handle.net/2433/285165-
dc.description.abstractThis paper proposes a combined approach of deep deterministic policy gradient (DDPG) and graph attention network (GAT) to the geometry optimization of latticed shells with surface shapes defined by a Bézier control net. The optimization problem is formulated to minimize the strain energy of the latticed structures with heights of the Bézier control points as design variables. The information of the latticed shells, including nodal configurations, element properties and internal forces, and the Bézier control net, consisting of control points and control net, are represented as graphs using node feature matrices, adjacency matrices, and weighted adjacency matrices. A specifically designed DDPG agent utilizes GAT and matrix manipulations to observe the state of the structure through the graphs, and decides which and how Bézier control points to move. The agent is trained to excel in the task through a reward signal computed from changes in the strain energy in each optimization step. As shown in numerical examples, the trained agent can effectively optimize structures of different sizes, control nets, configurations, and initial geometries from those used during the training. The performance of the trained agent is competitive compared to particle swarm optimization and simulated annealing despite using a lower computational cost.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10489-023-04565-wen
dc.rightsThe full-text file will be made open to the public on 17 March 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectBézier surfaceen
dc.subjectDeep deterministic policy gradienten
dc.subjectGeometry optimizationen
dc.subjectGraph attention networken
dc.subjectReinforcement learningen
dc.titleDeep deterministic policy gradient and graph attention network for geometry optimization of latticed shellsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleApplied Intelligenceen
dc.identifier.volume53-
dc.identifier.issue17-
dc.identifier.spage19809-
dc.identifier.epage19826-
dc.relation.doi10.1007/s10489-023-04565-w-
dc.textversionauthor-
dcterms.accessRightsembargoed access-
datacite.date.available2024-03-17-
datacite.awardNumber20H04467-
datacite.awardNumber21K20461-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H04467/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K20461/-
dc.identifier.pissn0924-669X-
dc.identifier.eissn1573-7497-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle創造性の論理的・ 技術的探求に基づくデザイン共創環境の構築と教育プログラムの開発ja
jpcoar.awardTitle離散構造物の最適設計に向けたグラフ埋め込みと機械学習の複合手法の開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。