このアイテムのアクセス数: 0

このアイテムのファイル:
このアイテムは一定期間後に公開されます。
公開日については,アイテム画面の「著作権等」でご確認ください。
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYamamoto, Utakoen
dc.contributor.authorImai, Hirohikoen
dc.contributor.authorSano, Keien
dc.contributor.authorOhzeki, Masayukien
dc.contributor.authorMatsuda, Tetsuyaen
dc.contributor.authorTanaka, Toshiyukien
dc.contributor.alternative山本, 詩子ja
dc.contributor.alternative今井, 宏彦ja
dc.contributor.alternative佐野, 圭ja
dc.contributor.alternative松田, 哲也ja
dc.contributor.alternative田中, 利幸ja
dc.date.accessioned2023-09-20T07:41:36Z-
dc.date.available2023-09-20T07:41:36Z-
dc.date.issued2023-12-01-
dc.identifier.urihttp://hdl.handle.net/2433/285214-
dc.description.abstractThe objective of our study is to observe dynamics of multiple substances in vivo with high temporal resolution from multi-spectral magnetic resonance spectroscopic imaging (MRSI) data. The multi-spectral MRSI can effectively separate spectral peaks of multiple substances and is useful to measure spatial distributions of substances. However it is difficult to measure time-varying substance distributions directly by ordinary full sampling because the measurement requires a significantly long time. In this study, we propose a novel method to reconstruct the spatio-temporal distributions of substances from randomly undersampled multi-spectral MRSI data on the basis of compressed sensing (CS) and the partially separable function model with base spectra of substances. In our method, we have employed spatio-temporal sparsity and temporal smoothness of the substance distributions as prior knowledge to perform CS. By directly reconstructing the spatio-temporal distributions of the substances themselves without reconstructing the spectra, this method significantly reduces the amount of MRSI data required per single time frame. We have formulated a regularized minimization problem for reconstruction and solved it by the alternating direction method of multipliers (ADMM). The effectiveness of our method has been evaluated using phantom data sets of glass tubes filled with glucose or lactate solution in increasing amounts over time and animal data sets of a tumor-bearing mouse to observe the metabolic dynamics involved in the Warburg effect in vivo. The reconstructed results are consistent with the expected behaviors, showing that our method can reconstruct the spatio-temporal distribution of substances with a temporal resolution of four seconds which is extremely short time scale compared with that of full sampling. Since this method utilizes only prior knowledge naturally assumed for the spatio-temporal distributions of substances and is independent of the number of the spectral and spatial dimensions or the acquisition sequence of MRSI, it is expected to contribute to revealing the underlying substance dynamics in MRSI data already acquired or to be acquired in the future.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseen
dc.rightsThe full-text file will be made open to the public on 1 December 2025 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectMagnetic resonance spectroscopic imagingen
dc.subjectSpatio-temporal reconstructionen
dc.subjectSubstance dynamicsen
dc.subjectCompressed sensingen
dc.subject𝓁1regularizationen
dc.subjectAlternating direction method of multipliersen
dc.titleSpatio-temporal reconstruction of substance dynamics using compressed sensing in multi-spectral magnetic resonance spectroscopic imagingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleExpert Systems with Applicationsen
dc.identifier.volume232-
dc.relation.doi10.1016/j.eswa.2023.120744-
dc.textversionauthor-
dc.identifier.artnum120744-
dcterms.accessRightsembargoed access-
datacite.date.available2025-12-01-
datacite.awardNumber25120008-
datacite.awardNumber16H02878-
datacite.awardNumber16K16407-
datacite.awardNumber19K20709-
datacite.awardNumber20J40290-
datacite.awardNumber22K12840-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-25120008/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H02878/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16K16407/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20709/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20J40290/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K12840/-
dc.identifier.pissn0957-4174-
dc.identifier.eissn1873-6793-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle圧縮センシングにもとづくスパースモデリングへのアプローチja
jpcoar.awardTitle非線形観測による推定の新展開ja
jpcoar.awardTitle生体画像の統計的性質と医師の叡智を統合した脳疾患自動検出技術の開発ja
jpcoar.awardTitle生体画像の見た目変換技術に基づいた早期診断のための読影支援システムの開発ja
jpcoar.awardTitle量子アニーリングを用いた組合せ最適化技術による次世代MRI計測手法の開発ja
jpcoar.awardTitleブラックボックス最適化を用いた臓器の変形推定手法の開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons