このアイテムのアクセス数: 60

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2023.3264855.pdf1.17 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTashiro, Yumaen
dc.contributor.authorAwano, Hiromitsuen
dc.contributor.alternative粟野, 皓光ja
dc.date.accessioned2023-10-03T04:08:26Z-
dc.date.available2023-10-03T04:08:26Z-
dc.date.issued2023-04-05-
dc.identifier.urihttp://hdl.handle.net/2433/285273-
dc.description.abstractModern deep learning algorithms comprise highly complex artificial neural networks, making it extremely difficult for humans to track their inference processes. As the social implementation of deep learning progresses, the human and economic losses caused by inference errors are becoming increasingly problematic, making it necessary to develop methods to explain the basis for the decisions of deep learning algorithms. Although an attention mechanism-based method to visualize the regions that contribute to steering angle prediction in an automated driving task has been proposed, its explanatory capability is low. In this paper, we focus on the fact that the importance of each bit in the activation value of a network is biased (i.e., the sign and exponent bits are weighted more heavily than the mantissa bits), which has been overlooked in previous studies. Specifically, this paper quantizes network activations, encouraging important information to be aggregated to the sign bit. Further, we introduce an attention mechanism restricted to the sign bit to improve the explanatory power. Our numerical experiment using the Udacity dataset revealed that the proposed method achieves a 1.14× higher area under curve (AUC) in terms of the deletion metric.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectSelf-drivingen
dc.subjectexplainable AIen
dc.subjectattentionen
dc.subjectquantized neural networken
dc.titlePay Attention via Quantization: Enhancing Explainability of Neural Networks via Quantized Activationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Accessen
dc.identifier.volume11-
dc.identifier.spage34431-
dc.identifier.epage34439-
dc.relation.doi10.1109/ACCESS.2023.3264855-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber21H03409-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H03409/-
dc.identifier.eissn2169-3536-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle未来予測技術で切り拓く疑似ゼロレイテンシ・テレイグジスタンスja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons