このアイテムのアクセス数: 67

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ijat.2022.p0167.pdf1.63 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIhara, Motohiroen
dc.contributor.authorYamaji, Iwaoen
dc.contributor.authorMatsubara, Atsushien
dc.contributor.alternative井原, 基博ja
dc.contributor.alternative山路, 伊和夫ja
dc.contributor.alternative松原, 厚ja
dc.date.accessioned2023-10-04T07:27:26Z-
dc.date.available2023-10-04T07:27:26Z-
dc.date.issued2022-03-
dc.identifier.urihttp://hdl.handle.net/2433/285315-
dc.description.abstractIn the machining field, the quality of a machined surface is characterized using both quantitative and sensory parameters. It is important to quantitatively evaluate sensory parameters to automate the evaluation of machined surfaces and determine the machining conditions. In this study, we quantitatively evaluate the gloss degree, which is a sensory parameter, via visual simulation. The gloss degree is evaluated based on an angular luminance distribution for machined surfaces cut using different tools. Using the quantitative evaluation result, observation is conducted to predict the appearance of the machined surface, and a sensory test is performed. The result shows that the quantitative evaluation results are consistent with the sensory test results.en
dc.language.isoeng-
dc.publisher富士技術出版ja
dc.publisher.alternativeFuji Technology Press Ltd.en
dc.rights© 2023 Fuji Technology Press Ltd.en
dc.rightsCreative Commons CC BY-ND: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NoDerivatives 4.0 International License.en
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/-
dc.subjectmachined surfaceen
dc.subjectsensory parameteren
dc.subjectquantitative evaluationen
dc.subjectglossen
dc.subjectvisual simulationen
dc.titleQuantitative Evaluation of Machined-Surface Gloss Using Visual Simulation and its Application to Sensory Testen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Automation Technologyen
dc.identifier.volume16-
dc.identifier.issue2-
dc.identifier.spage167-
dc.identifier.epage174-
dc.relation.doi10.20965/ijat.2022.p0167-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.pissn1883-8022-
dc.identifier.eissn1881-7629-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons