このアイテムのアクセス数: 67

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2248-09.pdf2.6 MBAdobe PDF見る/開く
タイトル: Discrete cubical homotopy groups and real $K$($¥pi$, 1) spaces (Women in Mathematics)
著者: Barcelo, Hélène
発行日: Apr-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2248
開始ページ: 75
終了ページ: 88
抄録: In this talk we wish to demonstrate how a theory, developed entirely for the purpose of solving problems stemming from search-and-rescue missions, gave rise to one that in turn has applications to fundamental mathematics. Discrete cubical homotopy theory is a discrete analogue of (singular) simplicial homotopy theory, associating a bigraded sequence of groups to a simplicial complex, capturing some of its combinatorial structure. The motivation for this construction came initially from the desire to find invariants for dynamic processes that were encoded using (combinatorial) simplicial complexes. The invariants should be topological in nature, but should also be sensitive to the combinatorics encoded in the complex, in particular to the level of connectivity among simplices. Over the last few years similar notions have arisen from several areas of mathematics (e.g., geometric group theory, coarse geometry, computer science) signaling both the pressing need for such a theory as well as its universal nature. As an illustration, we will provide a real analogue of Brieskorn's result on complex Eilenberg-MacLane spaces associated with Coxeter groups.
URI: http://hdl.handle.net/2433/285405
出現コレクション:2248 Women in Mathematics

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。