このアイテムのアクセス数: 112

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2248-11.pdf1.74 MBAdobe PDF見る/開く
タイトル: ACYLINDRICAL HYPERBOLICITY FOR SOME ARTIN GROUPS (Women in Mathematics)
著者: KATO, MOTOKO
OGUNI, SHIN-ICHI
著者名の別形: 加藤, 本子
尾國, 新一
発行日: Apr-2023
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2248
開始ページ: 101
終了ページ: 102
抄録: Artin groups, also called Artin-Tits groups, have been widely studied since their introduction by Tits in 1960s. In particular, Artin groups are important examples in geometric group theory. For various non-positively curved or negatively curved properties on discrete groups, Artin groups are interesting targets. In this talk, we treat acylindrical hyperbolicity of Artin groups. Charney and Morris-Wright showed acylindrical hyperbolicity of Artin groups of infinite type associated with graphs that are not joins, by studying clique-cube complexes and the actions on them. By developing their study and formulating some additional discussion, we demonstrate that acylindrical hyperbolicity holds for more general Artin groups. Indeed, we are able to treat Artin groups of infinite type associated with graphs that are not cones. This talk is based on a joint-work with Shin-ichi Oguni (Ehime University).
URI: http://hdl.handle.net/2433/285407
出現コレクション:2248 Women in Mathematics

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。