ダウンロード数: 76
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
pnas.2305451120.pdf | 982.18 kB | Adobe PDF | 見る/開く |
タイトル: | Analysis of the risk and pre-emptive control of viral outbreaks accounting for within-host dynamics: SARS-CoV-2 as a case study |
著者: | Hart, William S. Park, Hyeongki Jeong, Yong Dam Kim, Kwang Su Yoshimura, Raiki Thompson, Robin N. Iwami, Shingo |
著者名の別形: | 吉村, 雷輝 岩見, 真吾 |
キーワード: | INFECTIOUS DISEASE MODELLING OUTBREAK RISK SARS-COV-2 COVID-19 ANTIGEN TESTING |
発行日: | 10-Oct-2023 |
出版者: | Proceedings of the National Academy of Sciences |
誌名: | Proceedings of the National Academy of Sciences of the United States of America |
巻: | 120 |
号: | 41 |
論文番号: | e2305451120 |
抄録: | In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multiscale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multiscale models to design pre-emptive interventions against SARS-CoV-2 and other viruses. |
記述: | 世界初・新型コロナウイルス感染によるクラスター発生確率の計算に成功 --数理モデルに基づく効果的な感染症対策の確立へ重要な一歩--. 京都大学プレスリリース. 2023-10-05. |
著作権等: | Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
URI: | http://hdl.handle.net/2433/285496 |
DOI(出版社版): | 10.1073/pnas.2305451120 |
PubMed ID: | 37788317 |
関連リンク: | https://ashbi.kyoto-u.ac.jp/ja/news/20231005_research-result_shingo-iwami/ |
出現コレクション: | 学術雑誌掲載論文等 |
このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス