このアイテムのアクセス数: 121

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s43705-023-00308-7.pdf2.76 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKaneko, Hirotoen
dc.contributor.authorEndo, Hisashien
dc.contributor.authorHenry, Nicolasen
dc.contributor.authorBerney, Cédricen
dc.contributor.authorMahé, Frédéricen
dc.contributor.authorPoulain, Julieen
dc.contributor.authorLabadie, Karineen
dc.contributor.authorBeluche, Odetteen
dc.contributor.authorEl Hourany, Royen
dc.contributor.authorTara Oceans Coordinatorsen
dc.contributor.authorChaffron, Samuelen
dc.contributor.authorWincker, Patricken
dc.contributor.authorNakamura, Ryosukeen
dc.contributor.authorKarp-Boss, Leeen
dc.contributor.authorBoss, Emmanuelen
dc.contributor.authorBowler, Chrisen
dc.contributor.authorde Vargas, Colombanen
dc.contributor.authorTomii, Kentaroen
dc.contributor.authorOgata, Hiroyukien
dc.contributor.alternative金子, 博人ja
dc.contributor.alternative遠藤, 寿ja
dc.contributor.alternative中村, 良介ja
dc.contributor.alternative富井, 健太郎ja
dc.contributor.alternative緒方, 博之ja
dc.date.accessioned2023-10-13T07:40:05Z-
dc.date.available2023-10-13T07:40:05Z-
dc.date.issued2023-09-22-
dc.identifier.urihttp://hdl.handle.net/2433/285532-
dc.descriptionプランクトンを宇宙から観測する --衛星データを入力データとする海洋真核微生物群集予測モデルの開発--. 京都大学プレスリリース. 2023-10-19.ja
dc.description.abstractSatellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2023en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectBiooceanographyen
dc.subjectMicrobial ecologyen
dc.titlePredicting global distributions of eukaryotic plankton communities from satellite dataen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleISME Communicationsen
dc.identifier.volume3-
dc.relation.doi10.1038/s43705-023-00308-7-
dc.textversionpublisher-
dc.identifier.artnum101-
dc.addressInstitute for Chemical Research, Kyoto Universityen
dc.addressInstitute for Chemical Research, Kyoto Universityen
dc.addressCNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEEen
dc.addressCNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Sorbonne Université, CNRS, Station Biologique de Roscoffen
dc.addressCIRAD, UMR PHIM; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRDen
dc.addressGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclayen
dc.addressGenoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclayen
dc.addressGenoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclayen
dc.addressUniv. Littoral Côte d’Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLen
dc.addressResearch Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE; Nantes Université, École Centrale Nantes, CNRS, LS2Nen
dc.addressGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclayen
dc.addressInstitute for Chemical Research, Kyoto University; CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoffen
dc.addressSchool of Marine Sciences, University of Maineen
dc.addressSchool of Marine Sciences, University of Maineen
dc.addressResearch Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLen
dc.addressCNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Sorbonne Université, CNRS, Station Biologique de Roscoffen
dc.addressArtificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST)en
dc.addressInstitute for Chemical Research, Kyoto Universityen
dc.identifier.pmid37740029-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2023-10-19-2-
dcterms.accessRightsopen access-
datacite.awardNumber18H02279-
datacite.awardNumber19H05667-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02279/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H05667/-
dc.identifier.eissn2730-6151-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle巨大ウイルスが水圏低次生態系で果たす役割の包括的解明ja
jpcoar.awardTitle凝集体生命圏:海洋炭素循環の未知制御機構の解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons