このアイテムのアクセス数: 121
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s43705-023-00308-7.pdf | 2.76 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kaneko, Hiroto | en |
dc.contributor.author | Endo, Hisashi | en |
dc.contributor.author | Henry, Nicolas | en |
dc.contributor.author | Berney, Cédric | en |
dc.contributor.author | Mahé, Frédéric | en |
dc.contributor.author | Poulain, Julie | en |
dc.contributor.author | Labadie, Karine | en |
dc.contributor.author | Beluche, Odette | en |
dc.contributor.author | El Hourany, Roy | en |
dc.contributor.author | Tara Oceans Coordinators | en |
dc.contributor.author | Chaffron, Samuel | en |
dc.contributor.author | Wincker, Patrick | en |
dc.contributor.author | Nakamura, Ryosuke | en |
dc.contributor.author | Karp-Boss, Lee | en |
dc.contributor.author | Boss, Emmanuel | en |
dc.contributor.author | Bowler, Chris | en |
dc.contributor.author | de Vargas, Colomban | en |
dc.contributor.author | Tomii, Kentaro | en |
dc.contributor.author | Ogata, Hiroyuki | en |
dc.contributor.alternative | 金子, 博人 | ja |
dc.contributor.alternative | 遠藤, 寿 | ja |
dc.contributor.alternative | 中村, 良介 | ja |
dc.contributor.alternative | 富井, 健太郎 | ja |
dc.contributor.alternative | 緒方, 博之 | ja |
dc.date.accessioned | 2023-10-13T07:40:05Z | - |
dc.date.available | 2023-10-13T07:40:05Z | - |
dc.date.issued | 2023-09-22 | - |
dc.identifier.uri | http://hdl.handle.net/2433/285532 | - |
dc.description | プランクトンを宇宙から観測する --衛星データを入力データとする海洋真核微生物群集予測モデルの開発--. 京都大学プレスリリース. 2023-10-19. | ja |
dc.description.abstract | Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2023 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Biooceanography | en |
dc.subject | Microbial ecology | en |
dc.title | Predicting global distributions of eukaryotic plankton communities from satellite data | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | ISME Communications | en |
dc.identifier.volume | 3 | - |
dc.relation.doi | 10.1038/s43705-023-00308-7 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 101 | - |
dc.address | Institute for Chemical Research, Kyoto University | en |
dc.address | Institute for Chemical Research, Kyoto University | en |
dc.address | CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE | en |
dc.address | CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Sorbonne Université, CNRS, Station Biologique de Roscoff | en |
dc.address | CIRAD, UMR PHIM; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD | en |
dc.address | Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay | en |
dc.address | Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay | en |
dc.address | Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay | en |
dc.address | Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL | en |
dc.address | Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE; Nantes Université, École Centrale Nantes, CNRS, LS2N | en |
dc.address | Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay | en |
dc.address | Institute for Chemical Research, Kyoto University; CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff | en |
dc.address | School of Marine Sciences, University of Maine | en |
dc.address | School of Marine Sciences, University of Maine | en |
dc.address | Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL | en |
dc.address | CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff; Sorbonne Université, CNRS, Station Biologique de Roscoff | en |
dc.address | Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST) | en |
dc.address | Institute for Chemical Research, Kyoto University | en |
dc.identifier.pmid | 37740029 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2023-10-19-2 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18H02279 | - |
datacite.awardNumber | 19H05667 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02279/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H05667/ | - |
dc.identifier.eissn | 2730-6151 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 巨大ウイルスが水圏低次生態系で果たす役割の包括的解明 | ja |
jpcoar.awardTitle | 凝集体生命圏:海洋炭素循環の未知制御機構の解明 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス