ダウンロード数: 46

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acscatal.3c03769.pdf6.17 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSuzuki, Yoheien
dc.contributor.authorMakino, Fumiakien
dc.contributor.authorMiyata, Tomokoen
dc.contributor.authorTanaka, Hideakien
dc.contributor.authorNamba, Keiichien
dc.contributor.authorKano, Kenjien
dc.contributor.authorSowa, Keiseien
dc.contributor.authorKitazumi, Yukien
dc.contributor.authorShirai, Osamuen
dc.contributor.alternative鈴木, 洋平ja
dc.contributor.alternative牧野, 文信ja
dc.contributor.alternative宮田, 知子ja
dc.contributor.alternative田中, 秀明ja
dc.contributor.alternative難波, 啓一ja
dc.contributor.alternative加納, 健司ja
dc.contributor.alternative宋和, 慶盛ja
dc.contributor.alternative北隅, 優希ja
dc.contributor.alternative白井, 理ja
dc.date.accessioned2023-10-23T01:40:19Z-
dc.date.available2023-10-23T01:40:19Z-
dc.date.issued2023-10-20-
dc.identifier.urihttp://hdl.handle.net/2433/285571-
dc.description電極を基質認識できる酵素の反応メカニズムを解明 --次世代バイオセンシングにつながる基盤技術--. 京都大学プレスリリース. 2023-10-16.ja
dc.description.abstractFlavin adenine dinucleotide-dependent d-fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260, a membrane-bound heterotrimeric flavohemoprotein capable of direct electron transfer (DET)-type bioelectrocatalysis, was investigated from the perspective of structural biology, bioelectrochemistry, and protein engineering. DET-type reactions offer several benefits in biomimetics (e.g., biofuel cells, bioreactors, and biosensors) owing to their mediator-less configuration. FDH provides an intense DET-type catalytic signal; therefore, extensive research has been conducted on the fundamental principles and applications of biosensors. Structural analysis using cryo-electron microscopy and single-particle analysis has revealed the entire FDH structures with resolutions of 2.5 and 2.7 Å for the reduced and oxidized forms, respectively. The electron transfer (ET) pathway during the catalytic oxidation of d-fructose was investigated by using both thermodynamic and kinetic approaches. Structural analysis has shown the localization of the electrostatic surface charges around heme 2c in subunit II, and experiments using functionalized electrodes with a controlled surface charge support the notion that heme 2c is the electrode-active site. Furthermore, two aromatic amino acid residues (Trp427 and Phe489) were located in a possible long-range ET pathway between heme 2c and the electrode. Two variants (W427A and F489A) were obtained by site-directed mutagenesis, and their effects on DET-type activity were elucidated. The results have shown that Trp427 plays an essential role in accelerating long-range ET and triples the standard rate constant of heterogeneous ET according to bioelectrochemical analysis.en
dc.language.isoeng-
dc.publisherAmerican Chemical Society (ACS)en
dc.rights© 2023 The Authors. Published by American Chemical Society.en
dc.rightsThis publication is licensed under CC-BY-NC-ND 4.0.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectbioelectrocatalysisen
dc.subjectdirect electron transferen
dc.subjectcryo-electron microscopyen
dc.subjectmembrane-bound d-fructose dehydrogenaseen
dc.subjectintramolecular electron transferen
dc.titleEssential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound d-Fructose Dehydrogenase with Structural Bioelectrochemistryen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleACS Catalysisen
dc.identifier.volume13-
dc.identifier.issue20-
dc.identifier.spage13828-
dc.identifier.epage13837-
dc.relation.doi10.1021/acscatal.3c03769-
dc.textversionpublisher-
dc.addressDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto Universityen
dc.addressGraduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; JEOL Ltd.en
dc.addressGraduate School of Frontier Biosciences, Osaka Universityen
dc.addressInstitute for Protein Research, Osaka Universityen
dc.addressGraduate School of Frontier Biosciences, Osaka University; RIKEN Center for Biosystems Dynamics Research; RIKEN SPring-8 Center; JEOL YOKOGUSHI Research Alliance Laboratories, Osaka Universityen
dc.addressCenter for Advanced Science and Innovation, Kyoto Universityen
dc.addressDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto Universityen
dc.addressDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto Universityen
dc.addressDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto Universityen
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2023-10-16-
dcterms.accessRightsopen access-
datacite.awardNumber21H01961-
datacite.awardNumber22K14831-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H01961/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K14831/-
dc.identifier.eissn2155-5435-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle多孔質構造の制御を基盤とする拡散律速型バイオセンシングja
jpcoar.awardTitle生物電気化学と立体構造解析を組み合わせた直接電子移動型酵素の反応機構解明ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons