このアイテムのアクセス数: 188
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
PhysRevC.108.034311.pdf | 2.96 MB | Adobe PDF | 見る/開く |
タイトル: | Analysis of a Skyrme energy density functional with deep learning |
著者: | Hizawa, N. Hagino, K. Yoshida, K. |
著者名の別形: | 樋沢, 規宏 萩野, 浩一 |
キーワード: | Nuclear forces 20 ≤ A ≤ 38 Deep learning Density functional theory Machine learning Nuclear density functional theory Nuclear Physics |
発行日: | Sep-2023 |
出版者: | American Physical Society (APS) |
誌名: | Physical Review C |
巻: | 108 |
号: | 3 |
論文番号: | 034311 |
抄録: | Over the past decade, machine learning has been successfully applied in various fields of science. In this study, we employ a deep learning method to analyze a Skyrme energy density functional (Skyrme-EDF), which is a Kohn-Sham type functional commonly used in nuclear physics. Our goal is to construct an orbital-free functional that reproduces the results of the Skyrme-EDF. To this end, we first compute energies and densities of a nucleus with the Skyrme Kohn-Sham + Bardeen-Cooper-Schrieffer method by introducing a set of external fields. Those are then used as training data for deep learning to construct a functional which depends only on the density distribution. Applying this scheme to the ²⁴Mg nucleus with two distinct random external fields, we successfully obtain a new functional which reproduces the binding energy of the original Skyrme-EDF with an accuracy of about 0.04 MeV. The rate at which the neural network outputs the energy for a given density is about 10⁵–10⁶ times faster than the Kohn-Sham scheme, demonstrating a promising potential for applications to heavy and superheavy nuclei, including the dynamics of fission. |
著作権等: | ©2023 American Physical Society |
URI: | http://hdl.handle.net/2433/285893 |
DOI(出版社版): | 10.1103/PhysRevC.108.034311 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。