このアイテムのアクセス数: 113
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s11604-023-01452-9.pdf | 1.46 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Oshima, Sonoko | en |
dc.contributor.author | Fushimi, Yasutaka | en |
dc.contributor.author | Miyake, Kanae Kawai | en |
dc.contributor.author | Nakajima, Satoshi | en |
dc.contributor.author | Sakata, Akihiko | en |
dc.contributor.author | Okuchi, Sachi | en |
dc.contributor.author | Hinoda, Takuya | en |
dc.contributor.author | Otani, Sayo | en |
dc.contributor.author | Numamoto, Hitomi | en |
dc.contributor.author | Fujimoto, Koji | en |
dc.contributor.author | Shima, Atsushi | en |
dc.contributor.author | Nambu, Masahito | en |
dc.contributor.author | Sawamoto, Nobukatsu | en |
dc.contributor.author | Takahashi, Ryosuke | en |
dc.contributor.author | Ueno, Kentaro | en |
dc.contributor.author | Saga, Tsuneo | en |
dc.contributor.author | Nakamoto, Yuji | en |
dc.contributor.alternative | 大嶋, 園子 | ja |
dc.contributor.alternative | 伏見, 育崇 | ja |
dc.contributor.alternative | 三宅, 可奈江 | ja |
dc.contributor.alternative | 中島, 諭 | ja |
dc.contributor.alternative | 坂田, 昭彦 | ja |
dc.contributor.alternative | 奥知, 左智 | ja |
dc.contributor.alternative | 日野田, 卓也 | ja |
dc.contributor.alternative | 大谷, 紗代 | ja |
dc.contributor.alternative | 沼元, 瞳 | ja |
dc.contributor.alternative | 藤本, 晃司 | ja |
dc.contributor.alternative | 島, 淳 | ja |
dc.contributor.alternative | 澤本, 伸克 | ja |
dc.contributor.alternative | 髙橋, 良輔 | ja |
dc.contributor.alternative | 上野, 健太郎 | ja |
dc.contributor.alternative | 佐賀, 恒夫 | ja |
dc.contributor.alternative | 中本, 裕士 | ja |
dc.date.accessioned | 2023-11-06T04:05:35Z | - |
dc.date.available | 2023-11-06T04:05:35Z | - |
dc.date.issued | 2023-11 | - |
dc.identifier.uri | http://hdl.handle.net/2433/285989 | - |
dc.description.abstract | [Purpose]Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson’s disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR).[Materials and methods]We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwentNM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1+dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for diferentiating PD from non-PD were also compared between NEX1 and NEX1+dDLR.[Results]Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1+dDLR were signifcantly higherthan in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1+dDLR were 0.87 and 0.75, respectively, which had no signifcant diference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR.[Conclusion]Image quality for NEX1+dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2023 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Deep learning | en |
dc.subject | Denoising | en |
dc.subject | Neuromelanin | en |
dc.subject | Magnetic resonance imaging | en |
dc.subject | Parkinson’s disease | en |
dc.title | Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Japanese Journal of Radiology | en |
dc.identifier.volume | 41 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 1216 | - |
dc.identifier.epage | 1225 | - |
dc.relation.doi | 10.1007/s11604-023-01452-9 | - |
dc.textversion | publisher | - |
dc.identifier.pmid | 37256470 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 22K07746 | - |
datacite.awardNumber | 21K15826 | - |
datacite.awardNumber | 21K20834 | - |
datacite.awardNumber | 21K15623 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K07746/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15826/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K20834/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K15623/ | - |
dc.identifier.pissn | 1867-1071 | - |
dc.identifier.eissn | 1867-108X | - |
jpcoar.funderName | 日本学術振興 | ja |
jpcoar.funderName | 日本学術振興 | ja |
jpcoar.funderName | 日本学術振興 | ja |
jpcoar.funderName | 日本学術振興 | ja |
jpcoar.awardTitle | 小児脳MRIにおけるMR Fingerprintingの応用 | ja |
jpcoar.awardTitle | PETとMRIを活用した神経膠腫の分子生物学的プロファイルに迫る術前診断法の確立 | ja |
jpcoar.awardTitle | MRI・PETによる神経膠腫の遺伝子型診断と機械学習を用いた自動診断法の研究 | ja |
jpcoar.awardTitle | 神経変性疾患希少疾患データベース作成と画像診断支援アルゴリズムに関する研究 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス