このアイテムのアクセス数: 375

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
h2023018.pdf1.92 MBAdobe PDF見る/開く
タイトル: Evaluation of Deep Learning-Based Monitoring of Frog Reproductive Phenology
著者: Kimura, Kaede
Sota, Teiji
著者名の別形: 木村, 楓
曽田, 貞滋
発行日: Nov-2023
出版者: American Society of Ichthyologists and Herpetologists (ASIH)
誌名: Ichthyology & Herpetology
巻: 111
号: 4
開始ページ: 563
終了ページ: 570
抄録: To evaluate the utility of a deep-learning approach for monitoring amphibian reproduction, we examined the classification accuracy of a trained model and tested correlations between calling intensity and frog abundance. Field recording and count surveys were conducted at two sites in Kyoto City, Japan. A convolutional neural network (CNN) model was trained to classify the calls of five anuran species. The model achieved 91–100% precision and 75–98% recall per species, with relatively lower performance on less abundant species. Computational experiments investigating the effects of the number and seasonality of the training samples showed that models trained on larger datasets from broader recording seasons performed better. Calling activity was high when males were abundant (Pearson's r = 0.45–0.66), although correlations between the calling activity and the number of pairs in amplexus were generally weaker. Our results suggest that deep learning is an effective tool for reconstructing the reproductive phenology of male anurans from field recordings. However, caution is required when applying to rare species and when inferring female reproductive activity.
記述: カエルの鳴き声をAIで識別する --繁殖活動の高効率なモニタリング調査に向けて--. 京都大学プレスリリース. 2023-11-20.
著作権等: © 2023 by the American Society of Ichthyologists and Herpetologists
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/286167
DOI(出版社版): 10.1643/h2023018
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2023-11-20
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。