このアイテムのアクセス数: 92

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s40571-023-00584-z.pdf2.53 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNegishi, Hideyoen
dc.contributor.authorKondo, Masahiroen
dc.contributor.authorAmakawa, Hiroakien
dc.contributor.authorObara, Shingoen
dc.contributor.authorKurose, Ryoichien
dc.contributor.alternative根岸, 秀世ja
dc.contributor.alternative黒瀬, 良一ja
dc.date.accessioned2023-11-29T06:16:22Z-
dc.date.available2023-11-29T06:16:22Z-
dc.date.issued2023-11-
dc.identifier.urihttp://hdl.handle.net/2433/286203-
dc.description.abstractIn recent years, particle methods, which are good for moving boundary problems, have become an effective approach to understand and predict flows in complex geometry, such as lubrication behaviors in rolling bearings. This study adopted a physically consistent particle method, i.e., the moving particle hydrodynamics for incompressible flows (MPH-I) method. For capturing the free surface flows in lubrication, a surface tension model was included. In order to maintain the physical consistency in the MPH-I method, the surface tension model expressed with the two density potentials, which are cohesive pressure potential (CPP) and density gradient potential (DGP), was adopted. The MPH-I method with the two-potential-based surface tension model enabled to handle negative pressure and nearly incompressible flow with very large bulk modulus. In fact, the MPH-I method could successfully reproduce fundamental pressure generation effects in the fluid film lubrication, i.e., the wedge film and squeeze film effects. Furthermore, the computed lubrication pressure agreed well with the experimental results and the classic prediction with Reynolds equation. This implies that the present numerical method was validated under the fluid film lubrication problems.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s40571-023-00584-zen
dc.rightsThe full-text file will be made open to the public on 07 April 2024 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectFluid film lubricationen
dc.subjectSurface tensionen
dc.subjectWettabilityen
dc.subjectSmoothed particle hydrodynamicsen
dc.subjectMoving particle semi-impliciten
dc.subjectNegative pressureen
dc.titleA fluid lubrication analysis including negative pressure using a physically consistent particle methoden
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleComputational Particle Mechanicsen
dc.identifier.volume10-
dc.identifier.issue6-
dc.identifier.spage1717-
dc.identifier.epage1731-
dc.relation.doi10.1007/s40571-023-00584-z-
dc.textversionauthor-
dcterms.accessRightsembargoed access-
datacite.date.available2024-04-07-
datacite.awardNumber21K03847-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K03847/-
dc.identifier.pissn2196-4378-
dc.identifier.eissn2196-4386-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle粒子法によるマルチスケール・マルチフィジックス弾性流体潤滑シミュレータの開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。