Downloads: 24

Files in This Item:
File Description SizeFormat 
2023GL104418.pdf1.85 MBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSawayama, K.en
dc.contributor.authorIshibashi, T.en
dc.contributor.authorJiang, F.en
dc.contributor.authorTsuji, T.en
dc.contributor.alternative澤山, 和貴ja
dc.date.accessioned2023-11-30T00:47:22Z-
dc.date.available2023-11-30T00:47:22Z-
dc.date.issued2023-10-28-
dc.identifier.urihttp://hdl.handle.net/2433/286213-
dc.description.abstractThe fluid-flow properties of fractures have received increasing attention regarding the role of geofluids in the genesis of slow and fast earthquakes and recent advances in geoengineering developments. Geophysical observations are promising tools to remotely estimate crustal permeability changes; however, quantitative interpretations are limited by the rock-physical models' paucity for fractures. This study investigated changes in permeability, resistivity, and their respective relationships at elevated stress by performing numerical simulations of different fracture models with varying fracture size, roughness, and shear displacement. Numerical results and microscopic flow analysis demonstrate that permeability–resistivity relationships are controlled by percolation and are less dependent on fracture geometric characteristics. Our finding suggests that the permeability evolution of fractures can be formulated with resistivity changes independent of both fracture size and microstructure, the trends of which can be predicted using Archie's exponent. The extension to the electro-mechanical relationship further derives the potential applications of estimating stress changes.en
dc.language.isoeng-
dc.publisherAmerican Geophysical Union (AGU)en
dc.rights© 2023. The Authors.en
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectpermeabilityen
dc.subjectelectrical resistivityen
dc.subjectfractureen
dc.subjectArchieen
dc.subjectlattice Boltzmann methoden
dc.subjectdigital rock physicsen
dc.titleRelationship Between Permeability and Resistivity of Sheared Rock Fractures: The Role of Tortuosity and Flow Path Percolationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleGeophysical Research Lettersen
dc.identifier.volume50-
dc.identifier.issue20-
dc.relation.doi10.1029/2023GL104418-
dc.textversionpublisher-
dc.identifier.artnume2023GL104418-
dcterms.accessRightsopen access-
datacite.awardNumber22K14635-
datacite.awardNumber22H05303-
datacite.awardNumber21H05202-
datacite.awardNumber22H05108-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K14635/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-22H05303/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-21H05202/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-22H05108/-
dc.identifier.pissn0094-8276-
dc.identifier.eissn1944-8007-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleミクロ-マクロな岩石物性に基づく岩石亀裂のマルチスケール流体流動挙動の解明ja
jpcoar.awardTitle断層内流体流動を決定づける岩石物理モデルの開発ja
jpcoar.awardTitleSlow-to-Fast地震発生帯の構造解剖と状態変化究明ja
jpcoar.awardTitleデータ記述科学の社会応用分野への探索ja
Appears in Collections:Journal Articles

Show simple item record

Export to RefWorks


Export Format: 


This item is licensed under a Creative Commons License Creative Commons