このアイテムのアクセス数: 57

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s43246-022-00300-z.pdf1.12 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSakamoto, Yujien
dc.contributor.authorIzawa, Seiichiroen
dc.contributor.authorOhkita, Hideoen
dc.contributor.authorHiramoto, Masahiroen
dc.contributor.authorTamai, Yasunarien
dc.contributor.alternative坂本, 雄治ja
dc.contributor.alternative大北, 英生ja
dc.contributor.alternative玉井, 康成ja
dc.date.accessioned2023-11-30T04:52:59Z-
dc.date.available2023-11-30T04:52:59Z-
dc.date.issued2022-10-18-
dc.identifier.urihttp://hdl.handle.net/2433/286215-
dc.description.abstractRealizing efficient near-infrared to visible photon upconversion in the solid state is pivotal for commercial applications in various fields. We previously reported a solid-state upconversion device which imitated the photovoltaic conversion mechanisms of organic solar cells. This leads to a significant improvement of up to 2.3% in the external quantum efficiency, which is two orders of magnitude higher than that of conventional devices. Here, we investigate the upconversion mechanism of this device. We examine exciton and charge dynamics using transient absorption spectroscopy and find that approximately 67% of incident photons are utilized owing to fast singlet exciton diffusion in the nonfullerene acceptor layer. Strikingly, triplet excitons are accumulated near the donor/acceptor interface, enabling accelerated triplet–triplet annihilation by a factor of more than 10.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2022en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectLasers, LEDs and light sourcesen
dc.subjectMaterials for devicesen
dc.subjectSolar cellsen
dc.titleTriplet sensitization via charge recombination at organic heterojunction for efficient near-infrared to visible solid-state photon upconversionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleCommunications Materialsen
dc.identifier.volume3-
dc.relation.doi10.1038/s43246-022-00300-z-
dc.textversionpublisher-
dc.identifier.artnum76-
dcterms.accessRightsopen access-
datacite.awardNumber18K14115-
datacite.awardNumber21H02012-
datacite.awardNumber21H05394-
datacite.awardNumber21H05411-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K14115/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H02012/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-21H05394/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-21H05411/-
dc.identifier.eissn2662-4443-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle超高移動度分子を用いた有機太陽電池ja
jpcoar.awardTitle電子ドナー/アクセプター界面における究極的に「無駄」の無い電荷分離の実現ja
jpcoar.awardTitleドナー/アクセプター界面における動的エキシトンの高速電荷分離メカニズムの解明ja
jpcoar.awardTitle動的エキシトンを利用した新原理フォトンアップコンバージョンja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons